examine adult iLN only

Author

Mechthild Lütge

Published

November 1, 2022

load packages

suppressPackageStartupMessages({
  library(tidyverse)
  library(Seurat)
  library(magrittr)
  library(dplyr)
  library(purrr)
  library(ggplot2)
  library(here)
  library(runSeurat3)
  library(SingleCellExperiment)
  library(RColorBrewer)
  library(pheatmap)
  library(scater)
  library(scran)
  library(ggsci)
})

heatmap function

avgHeatmap <- function(seurat, selGenes, colVecIdent, colVecCond=NULL,
                       ordVec=NULL, gapVecR=NULL, gapVecC=NULL,cc=FALSE,
                       cr=FALSE, condCol=FALSE){
  
  selGenes <- selGenes$gene
  
  ## assay data
  clusterAssigned <- as.data.frame(Idents(seurat)) %>%
  dplyr::mutate(cell=rownames(.))
  colnames(clusterAssigned)[1] <- "ident"
  seuratDat <- GetAssayData(seurat)
  
  ## genes of interest
  genes <- data.frame(gene=rownames(seurat)) %>% 
    mutate(geneID=gsub("^.*\\.", "", gene)) %>% filter(geneID %in% selGenes)

  ## matrix with averaged cnts per ident
  logNormExpres <- as.data.frame(t(as.matrix(
    seuratDat[which(rownames(seuratDat) %in% genes$gene),])))
  logNormExpres <- logNormExpres %>% dplyr::mutate(cell=rownames(.)) %>%
    dplyr::left_join(.,clusterAssigned, by=c("cell")) %>%
    dplyr::select(-cell) %>% dplyr::group_by(ident) %>%
    dplyr::summarise_all(mean)
  logNormExpresMa <- logNormExpres %>% dplyr::select(-ident) %>% as.matrix()
  rownames(logNormExpresMa) <- logNormExpres$ident
  logNormExpresMa <- t(logNormExpresMa)
  rownames(logNormExpresMa) <- gsub("^.*?\\.","",rownames(logNormExpresMa))
  
  ## remove genes if they are all the same in all groups
  ind <- apply(logNormExpresMa, 1, sd) == 0
  logNormExpresMa <- logNormExpresMa[!ind,]
  genes <- genes[!ind,]

  ## color columns according to cluster
  annotation_col <- as.data.frame(gsub("(^.*?_)","",
                                       colnames(logNormExpresMa)))%>%
    dplyr::mutate(celltype=gsub("(_.*$)","",colnames(logNormExpresMa)))
  colnames(annotation_col)[1] <- "col1"
  annotation_col <- annotation_col %>%
    dplyr::mutate(cond = gsub(".*_","",col1)) %>%
    dplyr::select(cond, celltype)
  rownames(annotation_col) <- colnames(logNormExpresMa) 

  ann_colors = list(
      cond = colVecCond,
      celltype=colVecIdent)
  if(is.null(ann_colors$cond)){
    annotation_col$cond <- NULL
  }
  
  ## adjust order
  logNormExpresMa <- logNormExpresMa[selGenes,]
  if(is.null(ordVec)){
    ordVec <- levels(seurat)
  }
  logNormExpresMa <- logNormExpresMa[,ordVec]

  ## scaled row-wise
  pheatmap(logNormExpresMa, scale="row" ,treeheight_row = 0, cluster_rows = cr, 
         cluster_cols = cc,
         color = colorRampPalette(c("#2166AC", "#F7F7F7", "#B2182B"))(50),
         annotation_col = annotation_col, cellwidth=15, cellheight=10,
         annotation_colors = ann_colors, gaps_row = gapVecR, gaps_col = gapVecC)
}

set dir and load sample

basedir <- here()
seurat <- readRDS(paste0(basedir, "/data/AllSamplesMerged_seurat.rds"))

colLoc <- c("#61baba", "#ba6161")
names(colLoc) <- unique(seurat$location)

colAge <- c("#440154FF", "#3B528BFF", "#21908CFF", "#5DC863FF", "#FDE725FF")
names(colAge) <- c("E18" , "P7", "3w", "8w","E17to7wk")

colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f", "#5468a8", "#25328a",
            "#b6856e", "#0073C2FF", "#EFC000FF", "#868686FF", "#CD534CFF", 
            "#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF", "#A73030FF",
            "#4A6990FF")[1:length(unique(seurat$RNA_snn_res.0.25))]
names(colPal) <- unique(seurat$RNA_snn_res.0.25)

colCond <- c("#446a7f", "#cb7457")
names(colCond) <- c("LTbR", "WT")

colDat <- colDat <- c(pal_npg()(10),pal_futurama()(12), pal_aaas()(10),
                      pal_jama()(8))[1:length(unique(seurat$dataset))]
names(colDat) <- unique(seurat$dataset)

DimPlot all

clustering

DimPlot(seurat, reduction = "umap", group.by = "RNA_snn_res.0.25",
        cols = colPal, raster = F, shuffle =T)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

timepoint

DimPlot(seurat, reduction = "umap", group.by = "age", cols = colAge,
        raster = F, shuffle =T)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

location

DimPlot(seurat, reduction = "umap", group.by = "location", cols = colLoc,
        raster = F, shuffle =T)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

cond

DimPlot(seurat, reduction = "umap", group.by = "cond", cols = colCond,
        raster = F, shuffle =T)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

adult WT iLN only

seurat <- subset(seurat, age %in% c("E18", "P7", "3w"), invert=T)
seurat <- subset(seurat, cond %in% c("WT"))
seurat <- subset(seurat, location %in% c("iLN"))

table(seurat$location, seurat$age)
     
         8w E17to7wk
  iLN 13827     1133
## rerunSeurat
seurat <- NormalizeData(object = seurat)
seurat <- FindVariableFeatures(object = seurat)
seurat <- ScaleData(object = seurat, verbose = FALSE)
seurat <- RunPCA(object = seurat, npcs = 30, verbose = FALSE)
seurat <- RunTSNE(object = seurat, reduction = "pca", dims = 1:20)
seurat <- RunUMAP(object = seurat, reduction = "pca", dims = 1:20)
seurat <- FindNeighbors(object = seurat, reduction = "pca", dims = 1:20)
res <- c(0.8,0.6,0.25,0.4)
for (i in 1:length(res)) {
  seurat <- FindClusters(object = seurat, resolution = res[i],
                         random.seed = 1234)
  }
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 14960
Number of edges: 467228

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8130
Number of communities: 19
Elapsed time: 1 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 14960
Number of edges: 467228

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8338
Number of communities: 18
Elapsed time: 2 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 14960
Number of edges: 467228

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8893
Number of communities: 13
Elapsed time: 1 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 14960
Number of edges: 467228

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8610
Number of communities: 16
Elapsed time: 1 seconds
colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f", "#5468a8", "#25328a", "#b6856e",
            "#ba6161", "#20714a", "#0073C2FF", "#EFC000FF", "#868686FF", 
            "#CD534CFF","#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF",
            "#A73030FF", "#4A6990FF")[1:length(unique(seurat$RNA_snn_res.0.4))]
names(colPal) <- unique(seurat$RNA_snn_res.0.4)

clustering

DimPlot(seurat, reduction = "umap", group.by = "RNA_snn_res.0.4",
        cols = colPal)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

timepoint

DimPlot(seurat, reduction = "umap", group.by = "age", cols = colAge)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

cond

DimPlot(seurat, reduction = "umap", group.by = "cond", cols = colCond)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

dataset

DimPlot(seurat, reduction = "umap", group.by = "dataset",
        cols = colDat)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

location

DimPlot(seurat, reduction = "umap", group.by = "location", cols = colLoc)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

cluster characterization

Idents(seurat) <- seurat$RNA_snn_res.0.4
seurat_markers <- FindAllMarkers(seurat, only.pos = T, logfc.threshold = 0.25)

### plot DE genes top 10 avg logFC
markerAll <- seurat_markers %>% group_by(cluster) %>% 
  mutate(geneID = gene) %>% top_n(10, avg_log2FC) %>%
  mutate(gene=gsub(".*\\.", "",  geneID)) %>% 
  filter(nchar(gene)>1)

grpCnt <- markerAll %>% group_by(cluster) %>% summarise(cnt=n())
gapR <- data.frame(cluster=unique(markerAll$cluster)) %>% 
  left_join(.,grpCnt, by="cluster") %>% mutate(cumSum=cumsum(cnt)) 
ordVec <- levels(seurat)

pOut <- avgHeatmap(seurat = seurat, selGenes = markerAll,
                  colVecIdent = colPal, 
                  ordVec=ordVec,
                  gapVecR=gapR$cumSum, gapVecC=NULL,cc=T,
                  cr=F, condCol=F)

seurat$cluster_plus_loc <- paste0(seurat$RNA_snn_res.0.25, "_",
                                  seurat$location)

Idents(seurat) <- seurat$cluster_plus_loc
ordVec <- sort(levels(seurat))

pOut <- avgHeatmap(seurat = seurat, selGenes = markerAll,
                  colVecIdent = colPal, 
                  ordVec=ordVec,
                  gapVecR=gapR$cumSum, gapVecC=NULL,cc=F,
                  cr=F, condCol=T, colVecCond = colLoc)

vis selected stroma marker

genes <- data.frame(gene=rownames(seurat)) %>% 
    mutate(geneID=gsub("^.*\\.", "", gene)) 

selGenesAll <- data.frame(geneID=c("Rosa26eyfp", "Ccl19", "Ccl21a", "Des",
                                   "Icam1", "Vcam1", "Cnn1", "Acta2", "Rgs5",
                                   "Cox4i2", "Pi16", "Cd34")) %>% 
  left_join(., genes, by = "geneID") 

pList <- sapply(selGenesAll$gene, function(x){
p <- FeaturePlot(seurat, reduction = "umap", 
            features = x,
            cols=c("lightgrey", "darkred"),
            order = F)+
  theme(legend.position="right")
  plot(p)
})

save seurat

saveRDS(seurat, file = paste0(basedir,
                              "/data/WT_adultOnly_iLNonly_seurat.rds"))
write.table(seurat_markers, quote=F, row.names = T, col.names = T, sep= "\t",
            file = paste0(basedir,
                          "/data/WT_adultOnly_iLNonly_markerGenes.txt"))

session info

sessionInfo()
R version 4.3.0 (2023-04-21)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.4.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] ggsci_3.0.1                 scran_1.28.2               
 [3] scater_1.28.0               scuttle_1.10.3             
 [5] pheatmap_1.0.12             RColorBrewer_1.1-3         
 [7] SingleCellExperiment_1.22.0 SummarizedExperiment_1.30.2
 [9] Biobase_2.60.0              GenomicRanges_1.52.1       
[11] GenomeInfoDb_1.36.4         IRanges_2.36.0             
[13] S4Vectors_0.40.1            BiocGenerics_0.48.0        
[15] MatrixGenerics_1.12.3       matrixStats_1.2.0          
[17] runSeurat3_0.1.0            here_1.0.1                 
[19] magrittr_2.0.3              Seurat_5.0.2               
[21] SeuratObject_5.0.1          sp_2.1-3                   
[23] lubridate_1.9.3             forcats_1.0.0              
[25] stringr_1.5.1               dplyr_1.1.4                
[27] purrr_1.0.2                 readr_2.1.5                
[29] tidyr_1.3.1                 tibble_3.2.1               
[31] ggplot2_3.5.0               tidyverse_2.0.0            

loaded via a namespace (and not attached):
  [1] RcppAnnoy_0.0.22          splines_4.3.0            
  [3] later_1.3.2               bitops_1.0-7             
  [5] polyclip_1.10-6           fastDummies_1.7.3        
  [7] lifecycle_1.0.4           edgeR_3.42.4             
  [9] rprojroot_2.0.4           globals_0.16.2           
 [11] lattice_0.22-5            MASS_7.3-60.0.1          
 [13] limma_3.56.2              plotly_4.10.4            
 [15] rmarkdown_2.26            yaml_2.3.8               
 [17] metapod_1.8.0             httpuv_1.6.14            
 [19] sctransform_0.4.1         spam_2.10-0              
 [21] spatstat.sparse_3.0-3     reticulate_1.35.0        
 [23] cowplot_1.1.3             pbapply_1.7-2            
 [25] abind_1.4-5               zlibbioc_1.46.0          
 [27] Rtsne_0.17                presto_1.0.0             
 [29] RCurl_1.98-1.14           GenomeInfoDbData_1.2.10  
 [31] ggrepel_0.9.5             irlba_2.3.5.1            
 [33] listenv_0.9.1             spatstat.utils_3.0-4     
 [35] goftest_1.2-3             RSpectra_0.16-1          
 [37] dqrng_0.3.2               spatstat.random_3.2-3    
 [39] fitdistrplus_1.1-11       parallelly_1.37.1        
 [41] DelayedMatrixStats_1.22.6 leiden_0.4.3.1           
 [43] codetools_0.2-19          DelayedArray_0.26.7      
 [45] tidyselect_1.2.0          farver_2.1.1             
 [47] viridis_0.6.5             ScaledMatrix_1.8.1       
 [49] spatstat.explore_3.2-6    jsonlite_1.8.8           
 [51] BiocNeighbors_1.18.0      ellipsis_0.3.2           
 [53] progressr_0.14.0          ggridges_0.5.6           
 [55] survival_3.5-8            tools_4.3.0              
 [57] ica_1.0-3                 Rcpp_1.0.12              
 [59] glue_1.7.0                gridExtra_2.3            
 [61] xfun_0.42                 withr_3.0.0              
 [63] fastmap_1.1.1             bluster_1.10.0           
 [65] fansi_1.0.6               digest_0.6.34            
 [67] rsvd_1.0.5                timechange_0.3.0         
 [69] R6_2.5.1                  mime_0.12                
 [71] colorspace_2.1-0          scattermore_1.2          
 [73] tensor_1.5                spatstat.data_3.0-4      
 [75] utf8_1.2.4                generics_0.1.3           
 [77] data.table_1.15.2         httr_1.4.7               
 [79] htmlwidgets_1.6.4         S4Arrays_1.0.6           
 [81] uwot_0.1.16               pkgconfig_2.0.3          
 [83] gtable_0.3.4              lmtest_0.9-40            
 [85] XVector_0.40.0            htmltools_0.5.7          
 [87] dotCall64_1.1-1           scales_1.3.0             
 [89] png_0.1-8                 knitr_1.45               
 [91] rstudioapi_0.15.0         tzdb_0.4.0               
 [93] reshape2_1.4.4            nlme_3.1-164             
 [95] zoo_1.8-12                KernSmooth_2.23-22       
 [97] vipor_0.4.7               parallel_4.3.0           
 [99] miniUI_0.1.1.1            pillar_1.9.0             
[101] grid_4.3.0                vctrs_0.6.5              
[103] RANN_2.6.1                promises_1.2.1           
[105] BiocSingular_1.16.0       beachmat_2.16.0          
[107] xtable_1.8-4              cluster_2.1.6            
[109] beeswarm_0.4.0            evaluate_0.23            
[111] locfit_1.5-9.9            cli_3.6.2                
[113] compiler_4.3.0            rlang_1.1.3              
[115] crayon_1.5.2              future.apply_1.11.1      
[117] labeling_0.4.3            plyr_1.8.9               
[119] ggbeeswarm_0.7.2          stringi_1.8.3            
[121] viridisLite_0.4.2         deldir_2.0-4             
[123] BiocParallel_1.34.2       munsell_0.5.0            
[125] lazyeval_0.2.2            spatstat.geom_3.2-9      
[127] Matrix_1.6-5              RcppHNSW_0.6.0           
[129] hms_1.1.3                 patchwork_1.2.0          
[131] sparseMatrixStats_1.12.2  future_1.33.1            
[133] statmod_1.5.0             shiny_1.8.0              
[135] ROCR_1.0-11               igraph_2.0.2             
date()
[1] "Wed Apr  3 12:34:17 2024"