label and characterize adult iLN

Author

Mechthild Lütge

Published

November 1, 2022

load packages

suppressPackageStartupMessages({
  library(tidyverse)
  library(Seurat)
  library(magrittr)
  library(dplyr)
  library(purrr)
  library(ggplot2)
  library(here)
  library(runSeurat3)
  library(SingleCellExperiment)
  library(RColorBrewer)
  library(pheatmap)
  library(scater)
  library(scran)
  library(ggsci)
})

heatmap function

avgHeatmap <- function(seurat, selGenes, colVecIdent, colVecCond=NULL,
                       ordVec=NULL, gapVecR=NULL, gapVecC=NULL,cc=FALSE,
                       cr=FALSE, condCol=FALSE){
  
  selGenes <- selGenes$gene
  
  ## assay data
  clusterAssigned <- as.data.frame(Idents(seurat)) %>%
  dplyr::mutate(cell=rownames(.))
  colnames(clusterAssigned)[1] <- "ident"
  seuratDat <- GetAssayData(seurat)
  
  ## genes of interest
  genes <- data.frame(gene=rownames(seurat)) %>% 
    mutate(geneID=gsub("^.*\\.", "", gene)) %>% filter(geneID %in% selGenes)

  ## matrix with averaged cnts per ident
  logNormExpres <- as.data.frame(t(as.matrix(
    seuratDat[which(rownames(seuratDat) %in% genes$gene),])))
  logNormExpres <- logNormExpres %>% dplyr::mutate(cell=rownames(.)) %>%
    dplyr::left_join(.,clusterAssigned, by=c("cell")) %>%
    dplyr::select(-cell) %>% dplyr::group_by(ident) %>%
    dplyr::summarise_all(mean)
  logNormExpresMa <- logNormExpres %>% dplyr::select(-ident) %>% as.matrix()
  rownames(logNormExpresMa) <- logNormExpres$ident
  logNormExpresMa <- t(logNormExpresMa)
  rownames(logNormExpresMa) <- gsub("^.*?\\.","",rownames(logNormExpresMa))
  
  ## remove genes if they are all the same in all groups
  ind <- apply(logNormExpresMa, 1, sd) == 0
  logNormExpresMa <- logNormExpresMa[!ind,]
  genes <- genes[!ind,]

  ## color columns according to cluster
  annotation_col <- as.data.frame(gsub("(^.*?_)","",
                                       colnames(logNormExpresMa)))%>%
    dplyr::mutate(celltype=gsub("(_.*$)","",colnames(logNormExpresMa)))
  colnames(annotation_col)[1] <- "col1"
  annotation_col <- annotation_col %>%
    dplyr::mutate(cond = gsub(".*_","",col1)) %>%
    dplyr::select(cond, celltype)
  rownames(annotation_col) <- colnames(logNormExpresMa) 

  ann_colors = list(
      cond = colVecCond,
      celltype=colVecIdent)
  if(is.null(ann_colors$cond)){
    annotation_col$cond <- NULL
  }
  
  ## adjust order
  logNormExpresMa <- logNormExpresMa[selGenes,]
  if(is.null(ordVec)){
    ordVec <- levels(seurat)
  }
  logNormExpresMa <- logNormExpresMa[,ordVec]

  ## scaled row-wise
  pheatmap(logNormExpresMa, scale="row" ,treeheight_row = 0, cluster_rows = cr, 
         cluster_cols = cc,
         color = colorRampPalette(c("#2166AC", "#F7F7F7", "#B2182B"))(50),
         annotation_col = annotation_col, cellwidth=15, cellheight=10,
         annotation_colors = ann_colors, gaps_row = gapVecR, gaps_col = gapVecC)
}

set dir and load sample

basedir <- here()
seurat <- readRDS(paste0(basedir,
                         "/data/WT_adultOnly_iLNonly_filtered_seurat.rds"))

colLoc <- c("#61baba", "#ba6161")
names(colLoc) <- unique(seurat$location)

colAge <- c("#440154FF", "#3B528BFF", "#21908CFF", "#5DC863FF", "#FDE725FF")
names(colAge) <- c("E18" , "P7", "3w", "8w","E17to7wk")

colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f", "#5468a8", "#25328a",
            "#b6856e", "#0073C2FF", "#EFC000FF", "#868686FF", "#CD534CFF", 
            "#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF", "#A73030FF",
            "#4A6990FF")[1:length(unique(seurat$RNA_snn_res.0.4))]
names(colPal) <- unique(seurat$RNA_snn_res.0.4)

colDat <- colDat <- c(pal_npg()(10),pal_futurama()(12), pal_aaas()(10),
                      pal_jama()(8))[1:length(unique(seurat$dataset))]
names(colDat) <- unique(seurat$dataset)

DimPlot all

clustering

DimPlot(seurat, reduction = "umap", group.by = "RNA_snn_res.0.4",
        cols = colPal)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

add label

seurat$label <- "TRC"
seurat$label[which(seurat$RNA_snn_res.0.4 == "1")] <- "medRC1"
seurat$label[which(seurat$RNA_snn_res.0.4 == "0")] <- "IFRC"
seurat$label[which(seurat$RNA_snn_res.0.4 == "5")] <- "medRC2"
seurat$label[which(seurat$RNA_snn_res.0.4 == "3")] <- "TBRC"
seurat$label[which(seurat$RNA_snn_res.0.4 == "4")] <- "PRC1"
seurat$label[which(seurat$RNA_snn_res.0.4 == "6")] <- "Pi16+RC"
seurat$label[which(seurat$RNA_snn_res.0.4 == "9")] <- "PRC3"
seurat$label[which(seurat$RNA_snn_res.0.4 == "7")] <- "VSMC"
seurat$label[which(seurat$RNA_snn_res.0.4 == "8")] <- "FDC"



colLab <- c("#42a071", "#900C3F","#b66e8d", "#8F7700FF", "#61a4ba","#003C67FF",
            "#e3953d","#714542", "#b6856e", "#FFC300")

names(colLab) <- c("FDC", "TRC", "TBRC", "IFRC", "medRC1" , "medRC2",
                   "PRC1", "Pi16+RC", "PRC3", "VSMC")

vis label

DimPlot(seurat, reduction = "umap", group.by = "label",
        cols = colLab)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seurat, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab)+
  theme_void()

cluster characterization

Idents(seurat) <- seurat$label
seurat_markers <- data.frame(gene=c("Fcgr2b","Fcer2a","Cr2","Cxcl13",
                                    "Sulf1", "Thbs4", "Glycam1", "Ccl19", 
                                    "Ccl21a", "Fmod", "Grem1", "Bmp4",
                                    "Hamp2", "Tnfsf11", "Stc1", "Fbn2", "Ptn",
                                    "Lepr", "Ccl2", "Ccl7", "Cxcl10", 
                                    "Nr4a1","F3", "Fbln1","Ly6a", "Gdf10", 
                                    "Cd34","Ly6c1","Igfbp6", "Adamtsl1",
                                    "Flrt2", 
                                    "Pi16", "Thy1", "Lsp1", "Npr1", "Mfap5", 
                                    "Fndc1", "Cnn1", "Myh1", "Myh2", "Flt1",
                                    "Acta2", "Tinagl1", "Mcam", "Itga7", "Esam",
                                    "Fabp4", "Nrarp", "Cox4i2", "Rgs4"
                                    ))

genes <- data.frame(geneID=rownames(seurat)) %>%
  mutate(gene=gsub(".*\\.", "",  geneID)) 

markerAll <- seurat_markers %>% left_join(., genes, by="gene")

ordVec <- names(colLab)

pOut <- avgHeatmap(seurat = seurat, selGenes = markerAll,
                  colVecIdent = colLab, 
                  ordVec=ordVec,
                  gapVecR=NULL, gapVecC=NULL,cc=F,
                  cr=F, condCol=F)

vis selected PRC marker

genes <- data.frame(gene=rownames(seurat)) %>% 
    mutate(geneID=gsub("^.*\\.", "", gene)) 

selGenesAll <- data.frame(geneID=c( "Acta2", "Pi16", "Cd34", "Fbln1", "Gdf10",
                                    "Adamtsl1", "Fndc1", "Dpp4", "F3", "Mfap5",
                                    "Gsc", "Fgf10", "Col15a1", "Bmper",
                                    "Sema3c", "Igfbp6", "Thy1"
                                    )) %>% 
  left_join(., genes, by = "geneID") 

pList <- sapply(selGenesAll$gene, function(x){
p <- FeaturePlot(seurat, reduction = "umap", 
            features = x,
            cols=c("lightgrey", "darkred"),
            order = F)+
  theme(legend.position="right")
  plot(p)
})

fraction EYFP+ cells

Barplot

eyfpCnt <- data.frame(table(seurat$label, seurat$EYFP)) %>%
  spread(.,Var2 , Freq) %>% mutate(tot=pos+neg) %>% 
  mutate(freqPos=pos*100/tot) %>% mutate(freqNeg=neg*100/tot) 

eyfpCntDat <- eyfpCnt %>% select(Var1, freqPos, freqNeg) %>% 
  gather(., eyfp, freq, freqPos:freqNeg)

p <- ggpubr::ggbarplot(eyfpCntDat, x="Var1", y="freq", fill="eyfp",
                  palette = c("#9d9f9e","#09983f"),
                  order = rev(names(colLab)),
                  xlab = "", ylab = "Frequency",
                  orientation = "horizontal") +
  theme(legend.position = "right")
p

DotPlot

seurat$label <- factor(seurat$label, levels = names(colLab))
Idents(seurat) <- seurat$label

DotPlot(seurat, assay="RNA", features = "Rosa26eyfp.Rosa26eyfp", scale =F,
        dot.min = 0, dot.scale = 4, scale.by = "size") +
  scale_color_gradient(low="#bbd2c6", high="#017e40") +
  coord_flip() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  scale_x_discrete(breaks="Rosa26eyfp.Rosa26eyfp", labels="Rosa26eyfp") +
  xlab("") + ylab("")

save seurat

saveRDS(seurat, file = paste0(basedir,
                              "/data/WT_adultOnly_iLNonly_filtered",
                              "_labeled_seurat.rds"))

session info

sessionInfo()
R version 4.3.0 (2023-04-21)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.4.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] ggsci_3.0.1                 scran_1.28.2               
 [3] scater_1.28.0               scuttle_1.10.3             
 [5] pheatmap_1.0.12             RColorBrewer_1.1-3         
 [7] SingleCellExperiment_1.22.0 SummarizedExperiment_1.30.2
 [9] Biobase_2.60.0              GenomicRanges_1.52.1       
[11] GenomeInfoDb_1.36.4         IRanges_2.36.0             
[13] S4Vectors_0.40.1            BiocGenerics_0.48.0        
[15] MatrixGenerics_1.12.3       matrixStats_1.2.0          
[17] runSeurat3_0.1.0            here_1.0.1                 
[19] magrittr_2.0.3              Seurat_5.0.2               
[21] SeuratObject_5.0.1          sp_2.1-3                   
[23] lubridate_1.9.3             forcats_1.0.0              
[25] stringr_1.5.1               dplyr_1.1.4                
[27] purrr_1.0.2                 readr_2.1.5                
[29] tidyr_1.3.1                 tibble_3.2.1               
[31] ggplot2_3.5.0               tidyverse_2.0.0            

loaded via a namespace (and not attached):
  [1] RcppAnnoy_0.0.22          splines_4.3.0            
  [3] later_1.3.2               bitops_1.0-7             
  [5] polyclip_1.10-6           fastDummies_1.7.3        
  [7] lifecycle_1.0.4           rstatix_0.7.2            
  [9] edgeR_3.42.4              rprojroot_2.0.4          
 [11] globals_0.16.2            lattice_0.22-5           
 [13] MASS_7.3-60.0.1           backports_1.4.1          
 [15] limma_3.56.2              plotly_4.10.4            
 [17] rmarkdown_2.26            yaml_2.3.8               
 [19] metapod_1.8.0             httpuv_1.6.14            
 [21] sctransform_0.4.1         spam_2.10-0              
 [23] spatstat.sparse_3.0-3     reticulate_1.35.0        
 [25] cowplot_1.1.3             pbapply_1.7-2            
 [27] abind_1.4-5               zlibbioc_1.46.0          
 [29] Rtsne_0.17                RCurl_1.98-1.14          
 [31] GenomeInfoDbData_1.2.10   ggrepel_0.9.5            
 [33] irlba_2.3.5.1             listenv_0.9.1            
 [35] spatstat.utils_3.0-4      goftest_1.2-3            
 [37] RSpectra_0.16-1           dqrng_0.3.2              
 [39] spatstat.random_3.2-3     fitdistrplus_1.1-11      
 [41] parallelly_1.37.1         DelayedMatrixStats_1.22.6
 [43] leiden_0.4.3.1            codetools_0.2-19         
 [45] DelayedArray_0.26.7       tidyselect_1.2.0         
 [47] farver_2.1.1              viridis_0.6.5            
 [49] ScaledMatrix_1.8.1        spatstat.explore_3.2-6   
 [51] jsonlite_1.8.8            BiocNeighbors_1.18.0     
 [53] ellipsis_0.3.2            progressr_0.14.0         
 [55] ggridges_0.5.6            survival_3.5-8           
 [57] tools_4.3.0               ica_1.0-3                
 [59] Rcpp_1.0.12               glue_1.7.0               
 [61] gridExtra_2.3             xfun_0.42                
 [63] withr_3.0.0               fastmap_1.1.1            
 [65] bluster_1.10.0            fansi_1.0.6              
 [67] digest_0.6.34             rsvd_1.0.5               
 [69] timechange_0.3.0          R6_2.5.1                 
 [71] mime_0.12                 colorspace_2.1-0         
 [73] scattermore_1.2           tensor_1.5               
 [75] spatstat.data_3.0-4       utf8_1.2.4               
 [77] generics_0.1.3            data.table_1.15.2        
 [79] httr_1.4.7                htmlwidgets_1.6.4        
 [81] S4Arrays_1.0.6            uwot_0.1.16              
 [83] pkgconfig_2.0.3           gtable_0.3.4             
 [85] lmtest_0.9-40             XVector_0.40.0           
 [87] htmltools_0.5.7           carData_3.0-5            
 [89] dotCall64_1.1-1           scales_1.3.0             
 [91] png_0.1-8                 knitr_1.45               
 [93] rstudioapi_0.15.0         tzdb_0.4.0               
 [95] reshape2_1.4.4            nlme_3.1-164             
 [97] zoo_1.8-12                KernSmooth_2.23-22       
 [99] vipor_0.4.7               parallel_4.3.0           
[101] miniUI_0.1.1.1            pillar_1.9.0             
[103] grid_4.3.0                vctrs_0.6.5              
[105] RANN_2.6.1                ggpubr_0.6.0             
[107] promises_1.2.1            car_3.1-2                
[109] BiocSingular_1.16.0       beachmat_2.16.0          
[111] xtable_1.8-4              cluster_2.1.6            
[113] beeswarm_0.4.0            evaluate_0.23            
[115] locfit_1.5-9.9            cli_3.6.2                
[117] compiler_4.3.0            rlang_1.1.3              
[119] crayon_1.5.2              ggsignif_0.6.4           
[121] future.apply_1.11.1       labeling_0.4.3           
[123] plyr_1.8.9                ggbeeswarm_0.7.2         
[125] stringi_1.8.3             viridisLite_0.4.2        
[127] deldir_2.0-4              BiocParallel_1.34.2      
[129] munsell_0.5.0             lazyeval_0.2.2           
[131] spatstat.geom_3.2-9       Matrix_1.6-5             
[133] RcppHNSW_0.6.0            hms_1.1.3                
[135] patchwork_1.2.0           sparseMatrixStats_1.12.2 
[137] future_1.33.1             statmod_1.5.0            
[139] shiny_1.8.0               ROCR_1.0-11              
[141] broom_1.0.5               igraph_2.0.2             
date()
[1] "Wed Apr  3 13:57:54 2024"