integrate data from adult mLN and iLN

Author

Mechthild Lütge

Published

November 1, 2022

load packages

suppressPackageStartupMessages({
  library(tidyverse)
  library(Seurat)
  library(magrittr)
  library(dplyr)
  library(purrr)
  library(ggplot2)
  library(here)
  library(runSeurat3)
  library(SingleCellExperiment)
  library(RColorBrewer)
  library(pheatmap)
  library(scater)
  library(scran)
  library(ggsci)
})

heatmap function

avgHeatmap <- function(seurat, selGenes, colVecIdent, colVecCond=NULL,
                       ordVec=NULL, gapVecR=NULL, gapVecC=NULL,cc=FALSE,
                       cr=FALSE, condCol=FALSE){
  
  selGenes <- selGenes$gene
  
  ## assay data
  clusterAssigned <- as.data.frame(Idents(seurat)) %>%
  dplyr::mutate(cell=rownames(.))
  colnames(clusterAssigned)[1] <- "ident"
  seuratDat <- GetAssayData(seurat)
  
  ## genes of interest
  genes <- data.frame(gene=rownames(seurat)) %>% 
    mutate(geneID=gsub("^.*\\.", "", gene)) %>% filter(geneID %in% selGenes)

  ## matrix with averaged cnts per ident
  logNormExpres <- as.data.frame(t(as.matrix(
    seuratDat[which(rownames(seuratDat) %in% genes$gene),])))
  logNormExpres <- logNormExpres %>% dplyr::mutate(cell=rownames(.)) %>%
    dplyr::left_join(.,clusterAssigned, by=c("cell")) %>%
    dplyr::select(-cell) %>% dplyr::group_by(ident) %>%
    dplyr::summarise_all(mean)
  logNormExpresMa <- logNormExpres %>% dplyr::select(-ident) %>% as.matrix()
  rownames(logNormExpresMa) <- logNormExpres$ident
  logNormExpresMa <- t(logNormExpresMa)
  rownames(logNormExpresMa) <- gsub("^.*?\\.","",rownames(logNormExpresMa))
  
  ## remove genes if they are all the same in all groups
  ind <- apply(logNormExpresMa, 1, sd) == 0
  logNormExpresMa <- logNormExpresMa[!ind,]
  genes <- genes[!ind,]

  ## color columns according to cluster
  annotation_col <- as.data.frame(gsub("(^.*?_)","",
                                       colnames(logNormExpresMa)))%>%
    dplyr::mutate(celltype=gsub("(_.*$)","",colnames(logNormExpresMa)))
  colnames(annotation_col)[1] <- "col1"
  annotation_col <- annotation_col %>%
    dplyr::mutate(cond = gsub(".*_","",col1)) %>%
    dplyr::select(cond, celltype)
  rownames(annotation_col) <- colnames(logNormExpresMa) 

  ann_colors = list(
      cond = colVecCond,
      celltype=colVecIdent)
  if(is.null(ann_colors$cond)){
    annotation_col$cond <- NULL
  }
  
  ## adjust order
  logNormExpresMa <- logNormExpresMa[selGenes,]
  if(is.null(ordVec)){
    ordVec <- levels(seurat)
  }
  logNormExpresMa <- logNormExpresMa[,ordVec]

  ## scaled row-wise
  pheatmap(logNormExpresMa, scale="row" ,treeheight_row = 0, cluster_rows = cr, 
         cluster_cols = cc,
         color = colorRampPalette(c("#2166AC", "#F7F7F7", "#B2182B"))(50),
         annotation_col = annotation_col, cellwidth=15, cellheight=10,
         annotation_colors = ann_colors, gaps_row = gapVecR, gaps_col = gapVecC)
}

set dir and load sample

basedir <- here()
seurat <- readRDS(paste0(basedir, "/data/WT_adultOnly_bothLabeled_seurat.rds"))

colLoc <- c("#61baba", "#ba6161")
names(colLoc) <- unique(seurat$location)

colAge <- c("#440154FF", "#3B528BFF", "#21908CFF", "#5DC863FF", "#FDE725FF")
names(colAge) <- c("E18" , "P7", "3w", "8w","E17to7wk")

colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f", "#25328a",
            "#b6856e", "#0073C2FF", "#EFC000FF", "#868686FF", "#CD534CFF", 
            "#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF", "#A73030FF",
            "#4A6990FF")[1:length(unique(seurat$RNA_snn_res.0.25))]
names(colPal) <- unique(seurat$RNA_snn_res.0.25)

colCond <- c("#446a7f", "#cb7457")
names(colCond) <- c("LTbR", "WT")

colDat <- colDat <- c(pal_npg()(10),pal_futurama()(12), pal_aaas()(10),
                      pal_jama()(8))[1:length(unique(seurat$dataset))]
names(colDat) <- unique(seurat$dataset)

colLab <- c("#42a071", "#900C3F","#b66e8d", "#8F7700FF", "#61a4ba","#003C67FF",
            "#e3953d","#ab5711", "#714542", "#b6856e", "#FFC300")

names(colLab) <- c("FDC", "TRC", "TBRC", "IFRC", "medRC1" , "medRC2",
                   "PRC1", "PRC2", "Pi16+RC", "PRC3", "VSMC")

DimPlot all

clustering

DimPlot(seurat, reduction = "umap", group.by = "RNA_snn_res.0.25",
        cols = colPal, raster = F, shuffle = T)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

label

DimPlot(seurat, reduction = "umap", group.by = "label", cols = colLab,
        raster = F, shuffle = T)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

location

DimPlot(seurat, reduction = "umap", group.by = "location", cols = colLoc,
        raster = F, shuffle = T)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

cond

DimPlot(seurat, reduction = "umap", group.by = "cond", cols = colCond,
        raster = F, shuffle = T)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

integrate data across location

Idents(seurat) <- seurat$location

seurat.list <- SplitObject(object = seurat, split.by = "location")
for (i in 1:length(x = seurat.list)) {
    seurat.list[[i]] <- NormalizeData(object = seurat.list[[i]],
                                      verbose = FALSE)
    seurat.list[[i]] <- FindVariableFeatures(object = seurat.list[[i]], 
        selection.method = "vst", nfeatures = 2000, verbose = FALSE)
}

seurat.anchors <- FindIntegrationAnchors(object.list = seurat.list, dims = 1:20)
seurat.int <- IntegrateData(anchorset = seurat.anchors, dims = 1:20)
DefaultAssay(object = seurat.int) <- "integrated"

# rerun seurat
seurat.int <- ScaleData(object = seurat.int, verbose = FALSE,
                        features = rownames(seurat.int))
seurat.int <- RunPCA(object = seurat.int, npcs = 20, verbose = FALSE)
seurat.int <- RunTSNE(object = seurat.int, reduction = "pca", dims = 1:20)
seurat.int <- RunUMAP(object = seurat.int, reduction = "pca", dims = 1:20)

seurat.int <- FindNeighbors(object = seurat.int, reduction = "pca", dims = 1:20)
res <- c(0.6,0.8,0.4,0.25)
for(i in 1:length(res)){
  seurat.int <- FindClusters(object = seurat.int, resolution = res[i],
                             random.seed = 1234)
}
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 29872
Number of edges: 959733

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8624
Number of communities: 14
Elapsed time: 7 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 29872
Number of edges: 959733

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8450
Number of communities: 16
Elapsed time: 6 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 29872
Number of edges: 959733

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8876
Number of communities: 10
Elapsed time: 6 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 29872
Number of edges: 959733

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9122
Number of communities: 8
Elapsed time: 6 seconds
DefaultAssay(object = seurat.int) <- "RNA"
seurat.int$intCluster <- seurat.int$integrated_snn_res.0.4
Idents(seurat.int) <- seurat.int$intCluster


colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f", "#25328a", "#b6856e",
            "#ba6161", "#20714a", "#0073C2FF", "#EFC000FF", "#868686FF", 
            "#CD534CFF","#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF",
            "#A73030FF", "#4A6990FF")[1:length(unique(seurat.int$intCluster))]
names(colPal) <- unique(seurat.int$intCluster)

assign label

## remove cl 9 (damaged cells)
seurat.int <- subset(seurat.int, intCluster == "9", invert=T)

seurat.int$label2 <- seurat.int$label

seurat.int$label <- "MedRC/IFRC"
seurat.int$label[which(seurat.int$intCluster == "1")] <- "MedRC"
seurat.int$label[which(seurat.int$intCluster == "2")] <- "TRC"
seurat.int$label[which(seurat.int$intCluster == "3")] <- "PRC"
seurat.int$label[which(seurat.int$intCluster == "4")] <- "TBRC"
seurat.int$label[which(seurat.int$intCluster == "5")] <- "Pi16+RC"
seurat.int$label[which(seurat.int$intCluster == "6")] <- "FDC/MRC"
seurat.int$label[which(seurat.int$intCluster == "7")] <- "actMedRC"
seurat.int$label[which(seurat.int$intCluster == "8")] <- "VSMC"

colLab2 <- colLab
colLab <- c("#42a071", "#900C3F","#b66e8d", "#61a4ba", "#424671", "#003C67FF",
            "#e3953d", "#714542", "#b6856e", "#FFC300")

names(colLab) <- c("FDC/MRC", "TRC", "TBRC", "MedRC/IFRC", "MedRC" , "actMedRC",
                   "PRC", "Pi16+RC", "VSMC")

clustering

## visualize input data
DimPlot(seurat.int, reduction = "umap", cols=colPal)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

label

DimPlot(seurat.int, reduction = "umap", group.by = "label", cols = colLab)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seurat.int, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, shuffle = T)+
  theme_void()

label split by location

DimPlot(seurat.int, reduction = "umap", group.by = "label", cols = colLab,
        split.by = "location")+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seurat.int, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, split.by = "location", shuffle = T)+
  theme_void()

location

DimPlot(seurat.int, reduction = "umap", group.by = "location", cols = colLoc)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seurat.int, reduction = "umap", group.by = "location", pt.size=0.5,
        cols = colLoc, split.by = "location", shuffle = T)+
  theme_void()

cluster characterization

Idents(seurat.int) <- seurat.int$intCluster

seurat_markers <- FindAllMarkers(seurat.int, only.pos = T, logfc.threshold = 0.25)

### plot DE genes top 10 avg logFC
markerAll <- seurat_markers %>% group_by(cluster) %>% 
  mutate(geneID = gene) %>% top_n(10, avg_log2FC) %>%
  mutate(gene=gsub(".*\\.", "",  geneID)) %>% 
  filter(nchar(gene)>1)

grpCnt <- markerAll %>% group_by(cluster) %>% summarise(cnt=n())
gapR <- data.frame(cluster=unique(markerAll$cluster)) %>% 
  left_join(.,grpCnt, by="cluster") %>% mutate(cumSum=cumsum(cnt)) 
ordVec <- levels(seurat.int)

pOut <- avgHeatmap(seurat = seurat.int, selGenes = markerAll,
                  colVecIdent = colPal, 
                  ordVec=ordVec,
                  gapVecR=gapR$cumSum, gapVecC=NULL,cc=T,
                  cr=F, condCol=F)

save seurat

saveRDS(seurat.int, file = paste0(basedir,
                              "/data/WT_adultOnly_bothLabeled_integrated_", 
                              "_seurat.rds"))
write.table(seurat_markers, quote=F, row.names = T, col.names = T, sep= "\t",
            file = paste0(basedir,
                          "/data/WT_adultOnly_bothLabeled_integrated_", 
                          "markerGenes.txt"))

session info

sessionInfo()
R version 4.3.0 (2023-04-21)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.4.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] ggsci_3.0.1                 scran_1.28.2               
 [3] scater_1.28.0               scuttle_1.10.3             
 [5] pheatmap_1.0.12             RColorBrewer_1.1-3         
 [7] SingleCellExperiment_1.22.0 SummarizedExperiment_1.30.2
 [9] Biobase_2.60.0              GenomicRanges_1.52.1       
[11] GenomeInfoDb_1.36.4         IRanges_2.36.0             
[13] S4Vectors_0.40.1            BiocGenerics_0.48.0        
[15] MatrixGenerics_1.12.3       matrixStats_1.2.0          
[17] runSeurat3_0.1.0            here_1.0.1                 
[19] magrittr_2.0.3              Seurat_5.0.2               
[21] SeuratObject_5.0.1          sp_2.1-3                   
[23] lubridate_1.9.3             forcats_1.0.0              
[25] stringr_1.5.1               dplyr_1.1.4                
[27] purrr_1.0.2                 readr_2.1.5                
[29] tidyr_1.3.1                 tibble_3.2.1               
[31] ggplot2_3.5.0               tidyverse_2.0.0            

loaded via a namespace (and not attached):
  [1] RcppAnnoy_0.0.22          splines_4.3.0            
  [3] later_1.3.2               bitops_1.0-7             
  [5] polyclip_1.10-6           fastDummies_1.7.3        
  [7] lifecycle_1.0.4           edgeR_3.42.4             
  [9] rprojroot_2.0.4           globals_0.16.2           
 [11] lattice_0.22-5            MASS_7.3-60.0.1          
 [13] limma_3.56.2              plotly_4.10.4            
 [15] rmarkdown_2.26            yaml_2.3.8               
 [17] metapod_1.8.0             httpuv_1.6.14            
 [19] sctransform_0.4.1         spam_2.10-0              
 [21] spatstat.sparse_3.0-3     reticulate_1.35.0        
 [23] cowplot_1.1.3             pbapply_1.7-2            
 [25] abind_1.4-5               zlibbioc_1.46.0          
 [27] Rtsne_0.17                presto_1.0.0             
 [29] RCurl_1.98-1.14           GenomeInfoDbData_1.2.10  
 [31] ggrepel_0.9.5             irlba_2.3.5.1            
 [33] listenv_0.9.1             spatstat.utils_3.0-4     
 [35] goftest_1.2-3             RSpectra_0.16-1          
 [37] dqrng_0.3.2               spatstat.random_3.2-3    
 [39] fitdistrplus_1.1-11       parallelly_1.37.1        
 [41] DelayedMatrixStats_1.22.6 leiden_0.4.3.1           
 [43] codetools_0.2-19          DelayedArray_0.26.7      
 [45] tidyselect_1.2.0          farver_2.1.1             
 [47] viridis_0.6.5             ScaledMatrix_1.8.1       
 [49] spatstat.explore_3.2-6    jsonlite_1.8.8           
 [51] BiocNeighbors_1.18.0      ellipsis_0.3.2           
 [53] progressr_0.14.0          ggridges_0.5.6           
 [55] survival_3.5-8            tools_4.3.0              
 [57] ica_1.0-3                 Rcpp_1.0.12              
 [59] glue_1.7.0                gridExtra_2.3            
 [61] xfun_0.42                 withr_3.0.0              
 [63] fastmap_1.1.1             bluster_1.10.0           
 [65] fansi_1.0.6               digest_0.6.34            
 [67] rsvd_1.0.5                timechange_0.3.0         
 [69] R6_2.5.1                  mime_0.12                
 [71] colorspace_2.1-0          scattermore_1.2          
 [73] tensor_1.5                spatstat.data_3.0-4      
 [75] utf8_1.2.4                generics_0.1.3           
 [77] data.table_1.15.2         httr_1.4.7               
 [79] htmlwidgets_1.6.4         S4Arrays_1.0.6           
 [81] uwot_0.1.16               pkgconfig_2.0.3          
 [83] gtable_0.3.4              lmtest_0.9-40            
 [85] XVector_0.40.0            htmltools_0.5.7          
 [87] dotCall64_1.1-1           scales_1.3.0             
 [89] png_0.1-8                 knitr_1.45               
 [91] rstudioapi_0.15.0         tzdb_0.4.0               
 [93] reshape2_1.4.4            nlme_3.1-164             
 [95] zoo_1.8-12                KernSmooth_2.23-22       
 [97] vipor_0.4.7               parallel_4.3.0           
 [99] miniUI_0.1.1.1            pillar_1.9.0             
[101] grid_4.3.0                vctrs_0.6.5              
[103] RANN_2.6.1                promises_1.2.1           
[105] BiocSingular_1.16.0       beachmat_2.16.0          
[107] xtable_1.8-4              cluster_2.1.6            
[109] beeswarm_0.4.0            evaluate_0.23            
[111] locfit_1.5-9.9            cli_3.6.2                
[113] compiler_4.3.0            rlang_1.1.3              
[115] crayon_1.5.2              future.apply_1.11.1      
[117] labeling_0.4.3            plyr_1.8.9               
[119] ggbeeswarm_0.7.2          stringi_1.8.3            
[121] viridisLite_0.4.2         deldir_2.0-4             
[123] BiocParallel_1.34.2       munsell_0.5.0            
[125] lazyeval_0.2.2            spatstat.geom_3.2-9      
[127] Matrix_1.6-5              RcppHNSW_0.6.0           
[129] hms_1.1.3                 patchwork_1.2.0          
[131] sparseMatrixStats_1.12.2  future_1.33.1            
[133] statmod_1.5.0             shiny_1.8.0              
[135] ROCR_1.0-11               igraph_2.0.2             
date()
[1] "Wed Apr  3 14:44:09 2024"