Last updated: 2022-09-12

Checks: 6 1

Knit directory: humanCardiacFibroblasts/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210903) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 9b017be. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/GSEA/
    Ignored:    data/humanFibroblast/
    Ignored:    figure/DEgenesGZplusSG_Groups.Rmd/.DS_Store

Untracked files:
    Untracked:  figure/mergeHumanSamplesPlusGraz.Rmd/top marker 20-1.pdf
    Untracked:  figure/mergeHumanSamplesPlusGraz.Rmd/top marker 20-1.png

Unstaged changes:
    Modified:   analysis/integrateAcrossPatientsGZplusSG.Rmd
    Modified:   analysis/mergeHumanSamplesPlusGraz.Rmd
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 0-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 0-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 1-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 1-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 10-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 10-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 11-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 11-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 12-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 12-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 13-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 13-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 14-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 14-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 15-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 15-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 16-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 16-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 17-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 17-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 18-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 18-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 19-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 19-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 2-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 2-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 3-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 3-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 4-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 4-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 5-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 5-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 6-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 6-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 7-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 7-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 8-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 8-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 9-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 9-1.png
    Modified:   metadata2.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/integrateAcrossPatientsGZplusSG.Rmd) and HTML (docs/integrateAcrossPatientsGZplusSG.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 02765dc mluetge 2022-07-19 GSEA across diff groups
Rmd 3e98bf3 mluetge 2022-07-15 run DE genes HH vs Myo
html 3e98bf3 mluetge 2022-07-15 run DE genes HH vs Myo
Rmd d9e1a98 mluetge 2022-07-04 integrate samples Graz
html d9e1a98 mluetge 2022-07-04 integrate samples Graz

load packages

suppressPackageStartupMessages({
  library(SingleCellExperiment)
  library(tidyverse)
  library(Seurat)
  library(magrittr)
  library(dplyr)
  library(purrr)
  library(ggplot2)
  library(here)
  library(runSeurat3)
  library(ggsci)
  library(ggpubr)
  library(pheatmap)
  library(viridis)
  library(sctransform)
})

integrate data

basedir <- here()
seurat <- readRDS(file = paste0(basedir, 
                              "/data/humanHeartsPlusGraz_merged_seurat.rds"))

## integrate data across patients
Idents(seurat) <- seurat$ID

seurat.list <- SplitObject(object = seurat, split.by = "ID")
for (i in 1:length(x = seurat.list)) {
    seurat.list[[i]] <- NormalizeData(object = seurat.list[[i]],
                                      verbose = FALSE)
    seurat.list[[i]] <- FindVariableFeatures(object = seurat.list[[i]], 
        selection.method = "vst", nfeatures = 500, verbose = FALSE)
}

seurat.anchors <- FindIntegrationAnchors(object.list = seurat.list, dims = 1:20)
seurat.int <- IntegrateData(anchorset = seurat.anchors, dims = 1:20)
DefaultAssay(object = seurat.int) <- "integrated"

# rerun seurat
seurat.int <- ScaleData(object = seurat.int, verbose = FALSE)
seurat.int <- RunPCA(object = seurat.int, npcs = 20, verbose = FALSE)
seurat.int <- RunTSNE(object = seurat.int, reduction = "pca", dims = 1:20)
seurat.int <- RunUMAP(object = seurat.int, reduction = "pca", dims = 1:20)

seurat.int <- FindNeighbors(object = seurat.int, reduction = "pca", dims = 1:20,
                            k.param = 50)
res <- c(0.6,0.8,0.4,0.25)
for(i in 1:length(res)){
  seurat.int <- FindClusters(object = seurat.int, resolution = res[i],
                             random.seed = 1234)
}
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 52908
Number of edges: 6183319

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9212
Number of communities: 17
Elapsed time: 25 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 52908
Number of edges: 6183319

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9041
Number of communities: 18
Elapsed time: 27 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 52908
Number of edges: 6183319

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9424
Number of communities: 15
Elapsed time: 28 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 52908
Number of edges: 6183319

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9610
Number of communities: 12
Elapsed time: 25 seconds
DefaultAssay(object = seurat.int) <- "RNA"
seurat <- seurat.int
remove(seurat.int)
seurat$seurat_clusters <- seurat$integrated_snn_res.0.25
Idents(seurat) <- seurat$seurat_clusters

save int object

saveRDS(seurat, file = paste0(basedir, 
                              "/data/humanHeartsPlusGraz_intPatients_merged", 
                              "_seurat.rds"))

color vectors

colPal <- pal_igv()(length(levels(seurat)))
colTec <- pal_jama()(length(unique(seurat$technique)))
colSmp <- c(pal_uchicago()(8), pal_npg()(8), pal_aaas()(10))[1:length(unique(seurat$dataset))]
colCond <- pal_npg()(length(unique(seurat$cond)))
colID <- c(pal_jco()(10), pal_npg()(10))[1:length(unique(seurat$ID))]
colOrig <- pal_aaas()(length(unique(seurat$origin)))
colIso <- pal_nejm()(length(unique(seurat$isolation)))
colProc <- pal_aaas()(length(unique(seurat$processing)))

names(colPal) <- levels(seurat)
names(colTec) <- unique(seurat$technique)
names(colSmp) <- unique(seurat$dataset)
names(colCond) <- unique(seurat$cond)
names(colID) <- unique(seurat$ID)
names(colOrig) <- unique(seurat$origin)
names(colIso) <- unique(seurat$isolation)
names(colProc) <- unique(seurat$processing)

vis data

clusters

DimPlot(seurat, reduction = "umap", cols=colPal)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

technique

DimPlot(seurat, reduction = "umap", group.by = "technique", cols=colTec)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

Sample

DimPlot(seurat, reduction = "umap", group.by = "dataset", cols=colSmp)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

ID

DimPlot(seurat, reduction = "umap", group.by = "ID", cols=colID)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

Origin

DimPlot(seurat, reduction = "umap", group.by = "origin", cols=colOrig)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

isolation

DimPlot(seurat, reduction = "umap", group.by = "isolation", cols=colIso)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

cond

DimPlot(seurat, reduction = "umap", group.by = "cond", cols=colCond)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

processing

DimPlot(seurat, reduction = "umap", group.by = "processing", cols=colProc)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

marker genes

seurat_markers_all <- FindAllMarkers(object = seurat, assay ="RNA",
                                     only.pos = TRUE, min.pct = 0.25,
                                     logfc.threshold = 0.25,
                                     test.use = "wilcox")

top 15 marker genes per cluster

cluster <- levels(seurat)
selGenesAll <- seurat_markers_all %>% group_by(cluster) %>% 
  top_n(-15, p_val_adj) %>% 
  top_n(15, avg_log2FC)
selGenesAll <- selGenesAll %>% mutate(geneIDval=gsub("^.*\\.", "", gene)) %>% filter(nchar(geneIDval)>1)

template_hm <- c(
    "#### {{cl}}\n",
    "```{r top marker {{cl}}, fig.height=8, fig.width=6, echo = FALSE}\n",
    "selGenes <- selGenesAll %>% filter(cluster=='{{cl}}')",
    "pOut <- avgHeatmap(seurat = seurat, selGenes = selGenes,
                  colVecIdent = colPal, 
                  ordVec=levels(seurat),
                  gapVecR=NULL, gapVecC=NULL,cc=FALSE,
                  cr=T, condCol=F)\n",
    "```\n",
    "\n"
  )

plots_gp <- lapply(cluster, 
  function(cl) knitr::knit_expand(text = template_hm)
)

0

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

1

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

2

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

3

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

4

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

5

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

6

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

7

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

8

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

9

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

10

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

11

Version Author Date
3e98bf3 mluetge 2022-07-15
d9e1a98 mluetge 2022-07-04

save objects

write.table(seurat_markers_all,
            file=paste0(basedir,
                        "/data/humanHeartsPlusGraz_intPatients_merged", 
                        "_markerGenes.txt"),
            row.names = FALSE, col.names = TRUE, quote = FALSE, sep = "\t")

session info

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] sctransform_0.3.4           viridis_0.6.2              
 [3] viridisLite_0.4.1           pheatmap_1.0.12            
 [5] ggpubr_0.4.0                ggsci_2.9                  
 [7] runSeurat3_0.1.0            here_1.0.1                 
 [9] magrittr_2.0.3              sp_1.5-0                   
[11] SeuratObject_4.1.1          Seurat_4.1.1               
[13] forcats_0.5.2               stringr_1.4.1              
[15] dplyr_1.0.10                purrr_0.3.4                
[17] readr_2.1.2                 tidyr_1.2.0                
[19] tibble_3.1.8                ggplot2_3.3.6              
[21] tidyverse_1.3.2             SingleCellExperiment_1.18.0
[23] SummarizedExperiment_1.26.1 Biobase_2.56.0             
[25] GenomicRanges_1.48.0        GenomeInfoDb_1.32.3        
[27] IRanges_2.30.1              S4Vectors_0.34.0           
[29] BiocGenerics_0.42.0         MatrixGenerics_1.8.1       
[31] matrixStats_0.62.0         

loaded via a namespace (and not attached):
  [1] utf8_1.2.2             reticulate_1.26        tidyselect_1.1.2      
  [4] htmlwidgets_1.5.4      grid_4.2.1             Rtsne_0.16            
  [7] munsell_0.5.0          codetools_0.2-18       ica_1.0-3             
 [10] future_1.28.0          miniUI_0.1.1.1         withr_2.5.0           
 [13] spatstat.random_2.2-0  colorspace_2.0-3       progressr_0.11.0      
 [16] highr_0.9              knitr_1.40             rstudioapi_0.14       
 [19] ROCR_1.0-11            ggsignif_0.6.3         tensor_1.5            
 [22] listenv_0.8.0          labeling_0.4.2         git2r_0.30.1          
 [25] GenomeInfoDbData_1.2.8 polyclip_1.10-0        farver_2.1.1          
 [28] rprojroot_2.0.3        parallelly_1.32.1      vctrs_0.4.1           
 [31] generics_0.1.3         xfun_0.32              R6_2.5.1              
 [34] bitops_1.0-7           spatstat.utils_2.3-1   cachem_1.0.6          
 [37] DelayedArray_0.22.0    assertthat_0.2.1       promises_1.2.0.1      
 [40] scales_1.2.1           googlesheets4_1.0.1    rgeos_0.5-9           
 [43] gtable_0.3.1           globals_0.16.1         goftest_1.2-3         
 [46] workflowr_1.7.0        rlang_1.0.5            splines_4.2.1         
 [49] rstatix_0.7.0          lazyeval_0.2.2         gargle_1.2.0          
 [52] spatstat.geom_2.4-0    broom_1.0.1            yaml_2.3.5            
 [55] reshape2_1.4.4         abind_1.4-5            modelr_0.1.9          
 [58] backports_1.4.1        httpuv_1.6.5           tools_4.2.1           
 [61] ellipsis_0.3.2         spatstat.core_2.4-4    jquerylib_0.1.4       
 [64] RColorBrewer_1.1-3     ggridges_0.5.3         Rcpp_1.0.9            
 [67] plyr_1.8.7             zlibbioc_1.42.0        RCurl_1.98-1.8        
 [70] rpart_4.1.16           deldir_1.0-6           pbapply_1.5-0         
 [73] cowplot_1.1.1          zoo_1.8-10             haven_2.5.1           
 [76] ggrepel_0.9.1          cluster_2.1.4          fs_1.5.2              
 [79] data.table_1.14.2      scattermore_0.8        lmtest_0.9-40         
 [82] reprex_2.0.2           RANN_2.6.1             googledrive_2.0.0     
 [85] whisker_0.4            fitdistrplus_1.1-8     hms_1.1.2             
 [88] patchwork_1.1.2        mime_0.12              evaluate_0.16         
 [91] xtable_1.8-4           readxl_1.4.1           gridExtra_2.3         
 [94] compiler_4.2.1         KernSmooth_2.23-20     crayon_1.5.1          
 [97] htmltools_0.5.3        mgcv_1.8-40            later_1.3.0           
[100] tzdb_0.3.0             lubridate_1.8.0        DBI_1.1.3             
[103] dbplyr_2.2.1           MASS_7.3-58.1          Matrix_1.4-1          
[106] car_3.1-0              cli_3.3.0              parallel_4.2.1        
[109] igraph_1.3.4           pkgconfig_2.0.3        plotly_4.10.0         
[112] spatstat.sparse_2.1-1  xml2_1.3.3             bslib_0.4.0           
[115] XVector_0.36.0         rvest_1.0.3            digest_0.6.29         
[118] RcppAnnoy_0.0.19       spatstat.data_2.2-0    rmarkdown_2.16        
[121] cellranger_1.1.0       leiden_0.4.2           uwot_0.1.14           
[124] shiny_1.7.2            lifecycle_1.0.1        nlme_3.1-159          
[127] jsonlite_1.8.0         carData_3.0-5          limma_3.52.2          
[130] fansi_1.0.3            pillar_1.8.1           lattice_0.20-45       
[133] fastmap_1.1.0          httr_1.4.4             survival_3.4-0        
[136] glue_1.6.2             png_0.1-7              stringi_1.7.8         
[139] sass_0.4.2             irlba_2.3.5            future.apply_1.9.0    
date()
[1] "Mon Sep 12 12:13:36 2022"

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] sctransform_0.3.4           viridis_0.6.2              
 [3] viridisLite_0.4.1           pheatmap_1.0.12            
 [5] ggpubr_0.4.0                ggsci_2.9                  
 [7] runSeurat3_0.1.0            here_1.0.1                 
 [9] magrittr_2.0.3              sp_1.5-0                   
[11] SeuratObject_4.1.1          Seurat_4.1.1               
[13] forcats_0.5.2               stringr_1.4.1              
[15] dplyr_1.0.10                purrr_0.3.4                
[17] readr_2.1.2                 tidyr_1.2.0                
[19] tibble_3.1.8                ggplot2_3.3.6              
[21] tidyverse_1.3.2             SingleCellExperiment_1.18.0
[23] SummarizedExperiment_1.26.1 Biobase_2.56.0             
[25] GenomicRanges_1.48.0        GenomeInfoDb_1.32.3        
[27] IRanges_2.30.1              S4Vectors_0.34.0           
[29] BiocGenerics_0.42.0         MatrixGenerics_1.8.1       
[31] matrixStats_0.62.0         

loaded via a namespace (and not attached):
  [1] utf8_1.2.2             reticulate_1.26        tidyselect_1.1.2      
  [4] htmlwidgets_1.5.4      grid_4.2.1             Rtsne_0.16            
  [7] munsell_0.5.0          codetools_0.2-18       ica_1.0-3             
 [10] future_1.28.0          miniUI_0.1.1.1         withr_2.5.0           
 [13] spatstat.random_2.2-0  colorspace_2.0-3       progressr_0.11.0      
 [16] highr_0.9              knitr_1.40             rstudioapi_0.14       
 [19] ROCR_1.0-11            ggsignif_0.6.3         tensor_1.5            
 [22] listenv_0.8.0          labeling_0.4.2         git2r_0.30.1          
 [25] GenomeInfoDbData_1.2.8 polyclip_1.10-0        farver_2.1.1          
 [28] rprojroot_2.0.3        parallelly_1.32.1      vctrs_0.4.1           
 [31] generics_0.1.3         xfun_0.32              R6_2.5.1              
 [34] bitops_1.0-7           spatstat.utils_2.3-1   cachem_1.0.6          
 [37] DelayedArray_0.22.0    assertthat_0.2.1       promises_1.2.0.1      
 [40] scales_1.2.1           googlesheets4_1.0.1    rgeos_0.5-9           
 [43] gtable_0.3.1           globals_0.16.1         goftest_1.2-3         
 [46] workflowr_1.7.0        rlang_1.0.5            splines_4.2.1         
 [49] rstatix_0.7.0          lazyeval_0.2.2         gargle_1.2.0          
 [52] spatstat.geom_2.4-0    broom_1.0.1            yaml_2.3.5            
 [55] reshape2_1.4.4         abind_1.4-5            modelr_0.1.9          
 [58] backports_1.4.1        httpuv_1.6.5           tools_4.2.1           
 [61] ellipsis_0.3.2         spatstat.core_2.4-4    jquerylib_0.1.4       
 [64] RColorBrewer_1.1-3     ggridges_0.5.3         Rcpp_1.0.9            
 [67] plyr_1.8.7             zlibbioc_1.42.0        RCurl_1.98-1.8        
 [70] rpart_4.1.16           deldir_1.0-6           pbapply_1.5-0         
 [73] cowplot_1.1.1          zoo_1.8-10             haven_2.5.1           
 [76] ggrepel_0.9.1          cluster_2.1.4          fs_1.5.2              
 [79] data.table_1.14.2      scattermore_0.8        lmtest_0.9-40         
 [82] reprex_2.0.2           RANN_2.6.1             googledrive_2.0.0     
 [85] whisker_0.4            fitdistrplus_1.1-8     hms_1.1.2             
 [88] patchwork_1.1.2        mime_0.12              evaluate_0.16         
 [91] xtable_1.8-4           readxl_1.4.1           gridExtra_2.3         
 [94] compiler_4.2.1         KernSmooth_2.23-20     crayon_1.5.1          
 [97] htmltools_0.5.3        mgcv_1.8-40            later_1.3.0           
[100] tzdb_0.3.0             lubridate_1.8.0        DBI_1.1.3             
[103] dbplyr_2.2.1           MASS_7.3-58.1          Matrix_1.4-1          
[106] car_3.1-0              cli_3.3.0              parallel_4.2.1        
[109] igraph_1.3.4           pkgconfig_2.0.3        plotly_4.10.0         
[112] spatstat.sparse_2.1-1  xml2_1.3.3             bslib_0.4.0           
[115] XVector_0.36.0         rvest_1.0.3            digest_0.6.29         
[118] RcppAnnoy_0.0.19       spatstat.data_2.2-0    rmarkdown_2.16        
[121] cellranger_1.1.0       leiden_0.4.2           uwot_0.1.14           
[124] shiny_1.7.2            lifecycle_1.0.1        nlme_3.1-159          
[127] jsonlite_1.8.0         carData_3.0-5          limma_3.52.2          
[130] fansi_1.0.3            pillar_1.8.1           lattice_0.20-45       
[133] fastmap_1.1.0          httr_1.4.4             survival_3.4-0        
[136] glue_1.6.2             png_0.1-7              stringi_1.7.8         
[139] sass_0.4.2             irlba_2.3.5            future.apply_1.9.0