Last updated: 2022-09-22

Checks: 6 1

Knit directory: humanCardiacFibroblasts/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210903) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version cd902dd. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/GSEA/
    Ignored:    data/humanFibroblast/
    Ignored:    figure/DEgenesGZplusSG_Groups.Rmd/.DS_Store

Unstaged changes:
    Modified:   analysis/mergeHumanSamplesPlusGraz.Rmd
    Modified:   metadata2.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/mergeHumanSamplesPlusGraz.Rmd) and HTML (docs/mergeHumanSamplesPlusGraz.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cd902dd mluetge 2022-09-12 add human cardiac samples GZ and SG
html cd902dd mluetge 2022-09-12 add human cardiac samples GZ and SG
Rmd d9e1a98 mluetge 2022-07-04 integrate samples Graz
html d9e1a98 mluetge 2022-07-04 integrate samples Graz
Rmd 9fc92e5 mluetge 2022-06-23 add samples from Graz
html 9fc92e5 mluetge 2022-06-23 add samples from Graz

load packages

suppressPackageStartupMessages({
  library(SingleCellExperiment)
  library(tidyverse)
  library(Seurat)
  library(magrittr)
  library(dplyr)
  library(purrr)
  library(ggplot2)
  library(here)
  library(runSeurat3)
  library(ggsci)
  library(ggpubr)
  library(pheatmap)
})

set dir

basedir <- here()
metaDat <- read_tsv(paste0(basedir, "/metadata2.txt"), col_names = T)

load and assign samples

assignSamples <- function(smpNam, basedirSmp, smpTec, smpID, smpCond, smpOri,
                          smpIso, smpProc){
  smpNamFull <- list.files(path = paste0(basedirSmp, "/data/humanFibroblast/"),
                 pattern = paste0(smpNam, ".*_seurat.rds"))
  seuratSmp <- readRDS(paste0(basedirSmp, "/data/humanFibroblast/", smpNamFull))
  seuratSmp$technique <- smpTec
  seuratSmp$ID <- smpID
  seuratSmp$cond <- smpCond
  seuratSmp$origin <- smpOri
  seuratSmp$isolation <- smpIso
  seuratSmp$processing <- smpProc
  return(seuratSmp)
}

####################################################################

for(i in 1:length(metaDat$Sample)){
  seuratX <- assignSamples(smpNam = metaDat$Sample[i],
                           basedirSmp = basedir,
                           smpTec = metaDat$technique[i],
                           smpID = metaDat$ID[i],
                           smpCond = metaDat$cond[i],
                           smpOri = metaDat$origin[i],
                           smpProc = metaDat$processing[i],
                           smpIso = metaDat$isolation[i])
  if(exists("seurat")){
    seurat <- merge(x = seurat, y = seuratX, project = "humanCardiacFibro")
  }else{
    seurat <- seuratX
  }
}

remove(seuratX)

run clustering and DR and remove contaminating cells

seurat <- rerunSeurat3(seurat)
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 71279
Number of edges: 2341724

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9617
Number of communities: 15
Elapsed time: 17 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 71279
Number of edges: 2341724

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9273
Number of communities: 23
Elapsed time: 20 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 71279
Number of edges: 2341724

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9122
Number of communities: 28
Elapsed time: 17 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 71279
Number of edges: 2341724

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9448
Number of communities: 20
Elapsed time: 17 seconds
#seuratSub <- subset(seurat1, subset = `MGP-BALBcJ-G0026271.Grem1` >0) ## 5 cells
#seuratSub <- subset(seurat1, subset = `MGP-BALBcJ-G0026527.Bmp2` >0) ## 14104 cells

dat <- data.frame(table(seurat$dataset))
colnames(dat) <- c("dataset", "all")

knitr::kable(dat)
dataset all
o27533_1_11-11_20220203_Hu_nucseq_EMB30_GEM 1242
o27533_1_12-12_20220203_Hu_nucseq_EMB31_GEM 236
o27936_1_7-7_20220309_Hu_nucseq_EMB32_GEM 1192
o28576_1_01-1_20220525_Hu_nucseq_Graz_1_EMB_GEM 2740
o28576_1_02-2_20220525_Hu_nucseq_Graz_2_EMB_GEM 1684
o28576_1_03-3_20220525_Hu_nucseq_Graz_3_EMB_GEM 2396
o28576_1_04-4_20220525_Hu_nucseq_Graz_4_EMB_GEM 545
o28576_1_05-5_20220525_Hu_nucseq_Graz_5_EMB_GEM 781
o28576_1_06-6_20220525_Hu_nucseq_Graz_6_EMB_GEM 491
o28576_1_07-7_20220525_Hu_nucseq_Graz_7_EMB_GEM 653
o28576_1_08-8_20220525_Hu_nucseq_Graz_8_HH_GEM 3921
o28576_1_10-10_20220525_Hu_nucseq_Graz_10_HH_GEM 3731
o28576_1_11-11_20220525_Hu_nucseq_Graz_11_HH_GEM 3991
o28576_1_12-12_20220525_Hu_nucseq_Graz_12_HH_GEM 3818
o28576_1_13-13_20220525_Hu_nucseq_EMB32_GEM 1428
o292731_1-1_20220818_Hu_nucseq_Graz_9_HH_GEM 4908
o292731_2-2_20220818_Hu_nucseq_Graz_13_HH_GEM 9882
o292731_3-3_20220818_Hu_nucseq_SG_33_EMB_GEM 6286
o292731_4-4_20220818_Hu_nucseq_SG_34_EMB_GEM 620
o292731_5-5_20220818_Hu_nucseq_SG_35_EMB_GEM 2363
o294781_01-1_20220912_Hu_nucseq_Graz_21_HH_GEM 1442
o294781_02-2_20220912_Hu_nucseq_Graz_22_HH_GEM 1998
o294781_03-3_20220912_Hu_nucseq_Graz_23_HH_GEM 841
o294781_04-4_20220912_Hu_nucseq_Graz_24_HH_GEM 1480
o294781_05-5_20220912_Hu_nucseq_Graz_14_EMB_GEM 1268
o294781_06-6_20220912_Hu_nucseq_Graz_15_EMB_GEM 4439
o294781_07-7_20220912_Hu_nucseq_Graz_16_EMB_GEM 436
o294781_08-8_20220912_Hu_nucseq_Graz_17_EMB_GEM 1370
o294781_09-9_20220912_Hu_nucseq_Graz_18_EMB_GEM 2280
o294781_10-10_20220912_Hu_nucseq_Graz_19_EMB_GEM 111
o294781_11-11_20220912_Hu_nucseq_Graz_20_EMB_GEM 2706

color vectors

colPal <- c(pal_igv()(12),
            pal_aaas()(10))[1:length(levels(seurat))]
colTec <- pal_jama()(length(unique(seurat$technique)))
colSmp <- c(pal_uchicago()(9), pal_npg()(10), pal_aaas()(10), 
            pal_jama()(7))[1:length(unique(seurat$dataset))]
colCond <- pal_npg()(length(unique(seurat$cond)))
colID <- c(pal_jco()(10), pal_npg()(10), pal_futurama()(10),
           pal_d3()(10))[1:length(unique(seurat$ID))]
colOrig <- pal_aaas()(length(unique(seurat$origin)))
colIso <- pal_nejm()(length(unique(seurat$isolation)))
colProc <- pal_aaas()(length(unique(seurat$processing)))

names(colPal) <- levels(seurat)
names(colTec) <- unique(seurat$technique)
names(colSmp) <- unique(seurat$dataset)
names(colCond) <- unique(seurat$cond)
names(colID) <- unique(seurat$ID)
names(colOrig) <- unique(seurat$origin)
names(colIso) <- unique(seurat$isolation)
names(colProc) <- unique(seurat$processing)

vis data

clusters

DimPlot(seurat, reduction = "umap", cols=colPal)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
cd902dd mluetge 2022-09-12
d9e1a98 mluetge 2022-07-04
9fc92e5 mluetge 2022-06-23

technique

DimPlot(seurat, reduction = "umap", group.by = "technique", cols=colTec)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
cd902dd mluetge 2022-09-12
d9e1a98 mluetge 2022-07-04
9fc92e5 mluetge 2022-06-23

Sample

DimPlot(seurat, reduction = "umap", group.by = "dataset", cols=colSmp)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
cd902dd mluetge 2022-09-12
d9e1a98 mluetge 2022-07-04
9fc92e5 mluetge 2022-06-23

ID

DimPlot(seurat, reduction = "umap", group.by = "ID", cols=colID)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
cd902dd mluetge 2022-09-12
d9e1a98 mluetge 2022-07-04
9fc92e5 mluetge 2022-06-23

Origin

DimPlot(seurat, reduction = "umap", group.by = "origin", cols=colOrig)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
cd902dd mluetge 2022-09-12
d9e1a98 mluetge 2022-07-04
9fc92e5 mluetge 2022-06-23

isolation

DimPlot(seurat, reduction = "umap", group.by = "isolation", cols=colIso)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
cd902dd mluetge 2022-09-12
d9e1a98 mluetge 2022-07-04
9fc92e5 mluetge 2022-06-23

cond

DimPlot(seurat, reduction = "umap", group.by = "cond", cols=colCond)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
cd902dd mluetge 2022-09-12
d9e1a98 mluetge 2022-07-04
9fc92e5 mluetge 2022-06-23

processing

DimPlot(seurat, reduction = "umap", group.by = "processing", cols=colProc)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
cd902dd mluetge 2022-09-12
d9e1a98 mluetge 2022-07-04
9fc92e5 mluetge 2022-06-23

save objects

Idents(seurat) <- seurat$seurat_clusters
saveRDS(seurat, file = paste0(basedir, 
                              "/data/humanHeartsPlusGraz_merged_seurat.rds"))

session info

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] pheatmap_1.0.12             ggpubr_0.4.0               
 [3] ggsci_2.9                   runSeurat3_0.1.0           
 [5] here_1.0.1                  magrittr_2.0.3             
 [7] sp_1.5-0                    SeuratObject_4.1.1         
 [9] Seurat_4.1.1                forcats_0.5.2              
[11] stringr_1.4.1               dplyr_1.0.10               
[13] purrr_0.3.4                 readr_2.1.2                
[15] tidyr_1.2.1                 tibble_3.1.8               
[17] ggplot2_3.3.6               tidyverse_1.3.2            
[19] SingleCellExperiment_1.18.0 SummarizedExperiment_1.26.1
[21] Biobase_2.56.0              GenomicRanges_1.48.0       
[23] GenomeInfoDb_1.32.4         IRanges_2.30.1             
[25] S4Vectors_0.34.0            BiocGenerics_0.42.0        
[27] MatrixGenerics_1.8.1        matrixStats_0.62.0         

loaded via a namespace (and not attached):
  [1] utf8_1.2.2             reticulate_1.26        tidyselect_1.1.2      
  [4] htmlwidgets_1.5.4      grid_4.2.1             Rtsne_0.16            
  [7] munsell_0.5.0          codetools_0.2-18       ica_1.0-3             
 [10] future_1.28.0          miniUI_0.1.1.1         withr_2.5.0           
 [13] spatstat.random_2.2-0  colorspace_2.0-3       progressr_0.11.0      
 [16] highr_0.9              knitr_1.40             rstudioapi_0.14       
 [19] ROCR_1.0-11            ggsignif_0.6.3         tensor_1.5            
 [22] listenv_0.8.0          labeling_0.4.2         git2r_0.30.1          
 [25] GenomeInfoDbData_1.2.8 polyclip_1.10-0        farver_2.1.1          
 [28] bit64_4.0.5            rprojroot_2.0.3        parallelly_1.32.1     
 [31] vctrs_0.4.1            generics_0.1.3         xfun_0.32             
 [34] R6_2.5.1               bitops_1.0-7           spatstat.utils_2.3-1  
 [37] cachem_1.0.6           DelayedArray_0.22.0    assertthat_0.2.1      
 [40] vroom_1.5.7            promises_1.2.0.1       scales_1.2.1          
 [43] googlesheets4_1.0.1    rgeos_0.5-9            gtable_0.3.1          
 [46] globals_0.16.1         goftest_1.2-3          workflowr_1.7.0       
 [49] rlang_1.0.5            splines_4.2.1          rstatix_0.7.0         
 [52] lazyeval_0.2.2         gargle_1.2.0           spatstat.geom_2.4-0   
 [55] broom_1.0.1            yaml_2.3.5             reshape2_1.4.4        
 [58] abind_1.4-5            modelr_0.1.9           backports_1.4.1       
 [61] httpuv_1.6.6           tools_4.2.1            ellipsis_0.3.2        
 [64] spatstat.core_2.4-4    jquerylib_0.1.4        RColorBrewer_1.1-3    
 [67] ggridges_0.5.3         Rcpp_1.0.9             plyr_1.8.7            
 [70] zlibbioc_1.42.0        RCurl_1.98-1.8         rpart_4.1.16          
 [73] deldir_1.0-6           pbapply_1.5-0          cowplot_1.1.1         
 [76] zoo_1.8-10             haven_2.5.1            ggrepel_0.9.1         
 [79] cluster_2.1.4          fs_1.5.2               data.table_1.14.2     
 [82] scattermore_0.8        lmtest_0.9-40          reprex_2.0.2          
 [85] RANN_2.6.1             googledrive_2.0.0      whisker_0.4           
 [88] fitdistrplus_1.1-8     hms_1.1.2              patchwork_1.1.2       
 [91] mime_0.12              evaluate_0.16          xtable_1.8-4          
 [94] readxl_1.4.1           gridExtra_2.3          compiler_4.2.1        
 [97] KernSmooth_2.23-20     crayon_1.5.1           htmltools_0.5.3       
[100] mgcv_1.8-40            later_1.3.0            tzdb_0.3.0            
[103] lubridate_1.8.0        DBI_1.1.3              dbplyr_2.2.1          
[106] MASS_7.3-58.1          Matrix_1.4-1           car_3.1-0             
[109] cli_3.4.0              parallel_4.2.1         igraph_1.3.4          
[112] pkgconfig_2.0.3        plotly_4.10.0          spatstat.sparse_2.1-1 
[115] xml2_1.3.3             bslib_0.4.0            XVector_0.36.0        
[118] rvest_1.0.3            digest_0.6.29          sctransform_0.3.4     
[121] RcppAnnoy_0.0.19       spatstat.data_2.2-0    rmarkdown_2.16        
[124] cellranger_1.1.0       leiden_0.4.2           uwot_0.1.14           
[127] shiny_1.7.2            lifecycle_1.0.2        nlme_3.1-159          
[130] jsonlite_1.8.0         carData_3.0-5          viridisLite_0.4.1     
[133] fansi_1.0.3            pillar_1.8.1           lattice_0.20-45       
[136] fastmap_1.1.0          httr_1.4.4             survival_3.4-0        
[139] glue_1.6.2             png_0.1-7              bit_4.0.4             
[142] stringi_1.7.8          sass_0.4.2             irlba_2.3.5           
[145] future.apply_1.9.0    
date()
[1] "Thu Sep 22 16:01:11 2022"

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] pheatmap_1.0.12             ggpubr_0.4.0               
 [3] ggsci_2.9                   runSeurat3_0.1.0           
 [5] here_1.0.1                  magrittr_2.0.3             
 [7] sp_1.5-0                    SeuratObject_4.1.1         
 [9] Seurat_4.1.1                forcats_0.5.2              
[11] stringr_1.4.1               dplyr_1.0.10               
[13] purrr_0.3.4                 readr_2.1.2                
[15] tidyr_1.2.1                 tibble_3.1.8               
[17] ggplot2_3.3.6               tidyverse_1.3.2            
[19] SingleCellExperiment_1.18.0 SummarizedExperiment_1.26.1
[21] Biobase_2.56.0              GenomicRanges_1.48.0       
[23] GenomeInfoDb_1.32.4         IRanges_2.30.1             
[25] S4Vectors_0.34.0            BiocGenerics_0.42.0        
[27] MatrixGenerics_1.8.1        matrixStats_0.62.0         

loaded via a namespace (and not attached):
  [1] utf8_1.2.2             reticulate_1.26        tidyselect_1.1.2      
  [4] htmlwidgets_1.5.4      grid_4.2.1             Rtsne_0.16            
  [7] munsell_0.5.0          codetools_0.2-18       ica_1.0-3             
 [10] future_1.28.0          miniUI_0.1.1.1         withr_2.5.0           
 [13] spatstat.random_2.2-0  colorspace_2.0-3       progressr_0.11.0      
 [16] highr_0.9              knitr_1.40             rstudioapi_0.14       
 [19] ROCR_1.0-11            ggsignif_0.6.3         tensor_1.5            
 [22] listenv_0.8.0          labeling_0.4.2         git2r_0.30.1          
 [25] GenomeInfoDbData_1.2.8 polyclip_1.10-0        farver_2.1.1          
 [28] bit64_4.0.5            rprojroot_2.0.3        parallelly_1.32.1     
 [31] vctrs_0.4.1            generics_0.1.3         xfun_0.32             
 [34] R6_2.5.1               bitops_1.0-7           spatstat.utils_2.3-1  
 [37] cachem_1.0.6           DelayedArray_0.22.0    assertthat_0.2.1      
 [40] vroom_1.5.7            promises_1.2.0.1       scales_1.2.1          
 [43] googlesheets4_1.0.1    rgeos_0.5-9            gtable_0.3.1          
 [46] globals_0.16.1         goftest_1.2-3          workflowr_1.7.0       
 [49] rlang_1.0.5            splines_4.2.1          rstatix_0.7.0         
 [52] lazyeval_0.2.2         gargle_1.2.0           spatstat.geom_2.4-0   
 [55] broom_1.0.1            yaml_2.3.5             reshape2_1.4.4        
 [58] abind_1.4-5            modelr_0.1.9           backports_1.4.1       
 [61] httpuv_1.6.6           tools_4.2.1            ellipsis_0.3.2        
 [64] spatstat.core_2.4-4    jquerylib_0.1.4        RColorBrewer_1.1-3    
 [67] ggridges_0.5.3         Rcpp_1.0.9             plyr_1.8.7            
 [70] zlibbioc_1.42.0        RCurl_1.98-1.8         rpart_4.1.16          
 [73] deldir_1.0-6           pbapply_1.5-0          cowplot_1.1.1         
 [76] zoo_1.8-10             haven_2.5.1            ggrepel_0.9.1         
 [79] cluster_2.1.4          fs_1.5.2               data.table_1.14.2     
 [82] scattermore_0.8        lmtest_0.9-40          reprex_2.0.2          
 [85] RANN_2.6.1             googledrive_2.0.0      whisker_0.4           
 [88] fitdistrplus_1.1-8     hms_1.1.2              patchwork_1.1.2       
 [91] mime_0.12              evaluate_0.16          xtable_1.8-4          
 [94] readxl_1.4.1           gridExtra_2.3          compiler_4.2.1        
 [97] KernSmooth_2.23-20     crayon_1.5.1           htmltools_0.5.3       
[100] mgcv_1.8-40            later_1.3.0            tzdb_0.3.0            
[103] lubridate_1.8.0        DBI_1.1.3              dbplyr_2.2.1          
[106] MASS_7.3-58.1          Matrix_1.4-1           car_3.1-0             
[109] cli_3.4.0              parallel_4.2.1         igraph_1.3.4          
[112] pkgconfig_2.0.3        plotly_4.10.0          spatstat.sparse_2.1-1 
[115] xml2_1.3.3             bslib_0.4.0            XVector_0.36.0        
[118] rvest_1.0.3            digest_0.6.29          sctransform_0.3.4     
[121] RcppAnnoy_0.0.19       spatstat.data_2.2-0    rmarkdown_2.16        
[124] cellranger_1.1.0       leiden_0.4.2           uwot_0.1.14           
[127] shiny_1.7.2            lifecycle_1.0.2        nlme_3.1-159          
[130] jsonlite_1.8.0         carData_3.0-5          viridisLite_0.4.1     
[133] fansi_1.0.3            pillar_1.8.1           lattice_0.20-45       
[136] fastmap_1.1.0          httr_1.4.4             survival_3.4-0        
[139] glue_1.6.2             png_0.1-7              bit_4.0.4             
[142] stringi_1.7.8          sass_0.4.2             irlba_2.3.5           
[145] future.apply_1.9.0