Last updated: 2022-12-12

Checks: 6 1

Knit directory: humanCardiacFibroblasts/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210903) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 61f9e3b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/GSEA/
    Ignored:    data/humanFibroblast/
    Ignored:    figure/DEgenesGZplusSG_Groups.Rmd/.DS_Store

Unstaged changes:
    Modified:   analysis/projectSignatures.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/projectSignatures.Rmd) and HTML (docs/projectSignatures.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 307a2ca mluetge 2022-12-12 update pat ID SG29
html 307a2ca mluetge 2022-12-12 update pat ID SG29
Rmd 66c2208 mluetge 2022-12-08 compare T cell groups and project gene signatures
html 66c2208 mluetge 2022-12-08 compare T cell groups and project gene signatures

load packages

suppressPackageStartupMessages({
  library(SingleCellExperiment)
  library(tidyverse)
  library(Seurat)
  library(magrittr)
  library(dplyr)
  library(purrr)
  library(ggplot2)
  library(here)
  library(runSeurat3)
  library(ggsci)
  library(pheatmap)
  library(ggpubr)
  library(RColorBrewer)
  library(viridis)
})

heatmap function

avgHeatmap <- function(seurat, selGenes, colVecIdent, colVecCond=NULL,
                       ordVec=NULL, gapVecR=NULL, gapVecC=NULL,cc=FALSE,
                       cr=FALSE, condCol=FALSE){
  
  selGenes <- selGenes$gene
  
  ## assay data
  clusterAssigned <- as.data.frame(Idents(seurat)) %>%
  dplyr::mutate(cell=rownames(.))
  colnames(clusterAssigned)[1] <- "ident"
  seuratDat <- GetAssayData(seurat)
  
  ## genes of interest
  genes <- data.frame(gene=rownames(seurat)) %>% 
    mutate(geneID=gsub("^.*\\.", "", gene)) %>% filter(geneID %in% selGenes)

  ## matrix with averaged cnts per ident
  logNormExpres <- as.data.frame(t(as.matrix(
    seuratDat[which(rownames(seuratDat) %in% genes$gene),])))
  logNormExpres <- logNormExpres %>% dplyr::mutate(cell=rownames(.)) %>%
    dplyr::left_join(.,clusterAssigned, by=c("cell")) %>%
    dplyr::select(-cell) %>% dplyr::group_by(ident) %>%
    dplyr::summarise_all(mean)
  logNormExpresMa <- logNormExpres %>% dplyr::select(-ident) %>% as.matrix()
  rownames(logNormExpresMa) <- logNormExpres$ident
  logNormExpresMa <- t(logNormExpresMa)
  rownames(logNormExpresMa) <- gsub("^.*?\\.","",rownames(logNormExpresMa))
  
  ## remove genes if they are all the same in all groups
  ind <- apply(logNormExpresMa, 1, sd) == 0
  logNormExpresMa <- logNormExpresMa[!ind,]
  genes <- genes[!ind,]

  ## color columns according to cluster
  annotation_col <- as.data.frame(gsub("(^.*?_)","",
                                       colnames(logNormExpresMa)))%>%
    dplyr::mutate(celltype=gsub("(_.*$)","",colnames(logNormExpresMa)))
  colnames(annotation_col)[1] <- "col1"
  annotation_col <- annotation_col %>%
    dplyr::mutate(cond = gsub(".*_","",col1)) %>%
    dplyr::select(cond, celltype)
  rownames(annotation_col) <- colnames(logNormExpresMa) 

  ann_colors = list(
      cond = colVecCond,
      celltype=colVecIdent)
  if(is.null(ann_colors$cond)){
    annotation_col$cond <- NULL
  }
  
  ## adjust order
  logNormExpresMa <- logNormExpresMa[selGenes,]
  if(is.null(ordVec)){
    ordVec <- levels(seurat)
  }
  logNormExpresMa <- logNormExpresMa[,ordVec]

  ## scaled row-wise
  pheatmap(logNormExpresMa, scale="row" ,treeheight_row = 0, cluster_rows = cr, 
         cluster_cols = cc, border_color = NA, 
         color = colorRampPalette(c("#2166AC", "#F7F7F7", "#B2182B"))(50),
         annotation_col = annotation_col, cellwidth=15, cellheight=10,
         annotation_colors = ann_colors, gaps_row = gapVecR, gaps_col = gapVecC)
}

sign plot funct

## adapted from CellMixS
visGroup_adapt <- function (sce,group,dim_red = "TSNE",col_group=pal_nejm()(8)) 
{
    if (!is(sce, "SingleCellExperiment")) {
        stop("Error:'sce' must be a 'SingleCellExperiment' object.")
    }
    if (!group %in% names(colData(sce))) {
        stop("Error: 'group' variable must be in 'colData(sce)'")
    }
    cell_names <- colnames(sce)
    if (!dim_red %in% "TSNE") {
        if (!dim_red %in% reducedDimNames(sce)) {
            stop("Please provide a dim_red method listed in reducedDims of sce")
        }
        red_dim <- as.data.frame(reducedDim(sce, dim_red))
    }
    else {
        if (!"TSNE" %in% reducedDimNames(sce)) {
            if ("logcounts" %in% names(assays(sce))) {
                sce <- runTSNE(sce)
            }
            else {
                sce <- runTSNE(sce, exprs_values = "counts")
            }
        }
        red_dim <- as.data.frame(reducedDim(sce, "TSNE"))
    }
    colnames(red_dim) <- c("red_dim1", "red_dim2")
    df <- data.frame(sample_id = cell_names, group_var = colData(sce)[, 
        group], red_Dim1 = red_dim$red_dim1, red_Dim2 = red_dim$red_dim2)
    t <- ggplot(df, aes_string(x = "red_Dim1", y = "red_Dim2")) + 
        xlab(paste0(dim_red, "_1")) + ylab(paste0(dim_red, "_2")) + 
        theme_void() + theme(aspect.ratio = 1,
                             panel.grid.minor = element_blank(), 
        panel.grid.major = element_line(color = "grey", size = 0.3))
    t_group <- t + geom_point(size = 1.5, alpha = 0.8,
                              aes_string(color = "group_var")) + 
        guides(color = guide_legend(override.aes = list(size = 1), 
            title = group)) + ggtitle(group)
    if (is.numeric(df$group_var)) {
        t_group <- t_group + scale_color_viridis(option = "D")
    }
    else {
        t_group <- t_group + scale_color_manual(values = col_group)
    }
    t_group
}

set dir

basedir <- here()
seurat <- readRDS(file = paste0(basedir, 
                              "/data/humanHeartsPlusGraz_intPatients_merged", 
                              "labeled_woHH_seurat.rds"))
Idents(seurat) <- seurat$integrated_snn_res.0.6

color vectors

colPal <- c(pal_igv()(12),
            pal_aaas()(10))[1:length(levels(seurat))]
colTec <- pal_jama()(length(unique(seurat$technique)))
colSmp <- c(pal_uchicago()(9), pal_npg()(10), pal_aaas()(10), 
            pal_jama()(7))[1:length(unique(seurat$dataset))]
colCond <- pal_npg()(length(unique(seurat$cond)))
colID <- c(pal_jco()(10), pal_npg()(10), pal_futurama()(10),
           pal_d3()(10))[1:length(unique(seurat$ID))]
colOrig <- pal_aaas()(length(unique(seurat$origin)))
colIso <- pal_nejm()(length(unique(seurat$isolation)))
colProc <- pal_aaas()(length(unique(seurat$processing)))
colTgrp <- c("#d70700", "#00239a", "#1f7a1f")
colLab <- c("#c08b65", "#ba4e45", "#d4cc84", "#546f82", "#5c5cdf",
            "#80396e", "#8d5639", "#779462", "#800000FF", "#d87c15",
            "#FFA319FF", "#FF95A8FF") 
names(colLab) <- c("EndoEC", "Tcell","resMacrophage", "Fibroblast",
                   "infMacrophage", "Perivascular","Cardiomyocyte",
                   "Endothelial","Adipocytes","NeuralCells","SMC","LEC")
names(colTgrp) <- c("TcellHigh", "TcellLow", "TcellInt" )
names(colPal) <- levels(seurat)
names(colTec) <- unique(seurat$technique)
names(colSmp) <- unique(seurat$dataset)
names(colCond) <- unique(seurat$cond)
names(colID) <- unique(seurat$ID)
names(colOrig) <- unique(seurat$origin)
names(colIso) <- unique(seurat$isolation)
names(colProc) <- unique(seurat$processing)

vis data

clusters

DimPlot(seurat, reduction = "umap", cols=colPal)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
66c2208 mluetge 2022-12-08
DimPlot(seurat, reduction = "umap", cols=colPal,
        shuffle = T)+
  theme_void()

Version Author Date
66c2208 mluetge 2022-12-08

label

DimPlot(seurat, reduction = "umap",  group.by = "label", cols=colLab)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
307a2ca mluetge 2022-12-12
66c2208 mluetge 2022-12-08
DimPlot(seurat, reduction = "umap", group.by = "label", cols=colLab,
        shuffle = T)+
  theme_void()

Version Author Date
307a2ca mluetge 2022-12-12
66c2208 mluetge 2022-12-08

ID

DimPlot(seurat, reduction = "umap", group.by = "ID", cols=colID, shuffle = T)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
66c2208 mluetge 2022-12-08
DimPlot(seurat, reduction = "umap", group.by = "ID", cols=colID,
        shuffle = T)+
  theme_void()

Version Author Date
66c2208 mluetge 2022-12-08

cond

DimPlot(seurat, reduction = "umap", group.by = "cond", cols=colCond)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
66c2208 mluetge 2022-12-08

T cell grp

DimPlot(seurat, reduction = "umap", group.by = "TcellGrp", cols=colTgrp)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
307a2ca mluetge 2022-12-12
66c2208 mluetge 2022-12-08
DimPlot(seurat, reduction = "umap", group.by = "TcellGrp", cols=colTgrp,
        shuffle = T)+
  theme_void()

Version Author Date
307a2ca mluetge 2022-12-12
66c2208 mluetge 2022-12-08

label split by T cell Grp

DimPlot(seurat, reduction = "umap", group.by = "label", cols=colLab,
        split.by = "TcellGrp", shuffle = T)+
  theme_void()

Version Author Date
307a2ca mluetge 2022-12-12
66c2208 mluetge 2022-12-08

project signatures

signature cut 2

signDat <- read_delim(file = paste0(basedir,
                    "/data/GSEA/selGenesSignature.txt"),
                    delim = "\t")
genes <- data.frame(geneID=rownames(seurat)) %>% 
  mutate(gene=gsub("^.*\\.", "", geneID))
signDat <- signDat %>% left_join(.,genes, by="gene")
allSign <- unique(signDat$signature)

sce <- as.SingleCellExperiment(seurat)

## add reduced dim
seurat2 <- seurat
DefaultAssay(object = seurat2) <- "integrated"
sce2 <- as.SingleCellExperiment(seurat2)
reducedDims(sce) <- reducedDims(sce2)
remove(seurat2)
remove(sce2)

treatGrps <- unique(sce$TcellGrp)

cutOff <- 2
pal = viridis(100)
sc <- scale_colour_gradientn(colours = pal, limits=c(0, cutOff))

lapply(unique(signDat$signature), function(sign){
  signGenes <- signDat %>% dplyr::filter(signature == sign)
  sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
  cntMat <- rowSums(t(as.matrix(sceSub@assays@data$logcounts)))/nrow(signGenes)
  sceSub$sign <- cntMat
  sceSub$sign[which(sceSub$sign > cutOff)] <- cutOff
  sceSub$sign[which(sceSub$sign < 0)] <- 0
  lapply(treatGrps, function(treat){
    sceSubT <- sceSub[, which(sceSub$TcellGrp == treat)]
    p <- visGroup_adapt(sceSubT, 'sign', dim_red = 'UMAP') +
    sc +
    guides(colour = guide_colourbar(title = '')) +
    ggtitle(paste0(sign, ' signature - ', treat)) +
    theme_classic() + 
    theme(axis.text = element_blank(),
          axis.ticks = element_blank()) +
    labs(x='Dimension 1', y='Dimension 2')
    p
  })
})
[[1]]
[[1]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[1]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[1]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[2]]
[[2]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[2]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[2]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[3]]
[[3]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[3]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[3]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[4]]
[[4]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[4]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[4]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08
pal = colorRampPalette(rev(brewer.pal(11, 'RdBu')))
sc <- scale_colour_gradientn(colours = pal(100), limits=c(0, cutOff))

lapply(unique(signDat$signature), function(sign){
  signGenes <- signDat %>% dplyr::filter(signature == sign)
  sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
  cntMat <- rowSums(t(as.matrix(sceSub@assays@data$logcounts)))/nrow(signGenes)
  sceSub$sign <- cntMat
  sceSub$sign[which(sceSub$sign > cutOff)] <- cutOff
  sceSub$sign[which(sceSub$sign < 0)] <- 0
  lapply(treatGrps, function(treat){
    sceSubT <- sceSub[, which(sceSub$TcellGrp == treat)]
    p <- visGroup_adapt(sceSubT, 'sign', dim_red = 'UMAP') +
    sc +
    guides(colour = guide_colourbar(title = '')) +
    ggtitle(paste0(sign, ' signature - ', treat)) +
    theme_classic() + 
    theme(axis.text = element_blank(),
          axis.ticks = element_blank()) +
    labs(x='Dimension 1', y='Dimension 2')
    p
  })
})
[[1]]
[[1]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[1]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[1]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[2]]
[[2]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[2]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[2]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[3]]
[[3]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[3]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[3]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[4]]
[[4]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[4]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[4]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08

signature cut 1.5

cutOff <- 1.5
pal = colorRampPalette(rev(brewer.pal(11, 'RdBu')))
sc <- scale_colour_gradientn(colours = pal(100), limits=c(0, cutOff))

lapply(unique(signDat$signature), function(sign){
  signGenes <- signDat %>% dplyr::filter(signature == sign)
  sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
  cntMat <- rowSums(t(as.matrix(sceSub@assays@data$logcounts)))/nrow(signGenes)
  sceSub$sign <- cntMat
  sceSub$sign[which(sceSub$sign > cutOff)] <- cutOff
  sceSub$sign[which(sceSub$sign < 0)] <- 0
  lapply(treatGrps, function(treat){
    sceSubT <- sceSub[, which(sceSub$TcellGrp == treat)]
    p <- visGroup_adapt(sceSubT, 'sign', dim_red = 'UMAP') +
    sc +
    guides(colour = guide_colourbar(title = '')) +
    ggtitle(paste0(sign, ' signature - ', treat)) +
    theme_classic() + 
    theme(axis.text = element_blank(),
          axis.ticks = element_blank()) +
    labs(x='Dimension 1', y='Dimension 2')
    p
  })
})
[[1]]
[[1]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[1]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[1]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[2]]
[[2]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[2]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[2]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[3]]
[[3]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[3]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[3]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[4]]
[[4]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[4]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[4]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08
pal = viridis(100)
sc <- scale_colour_gradientn(colours = pal, limits=c(0, cutOff))
lapply(unique(signDat$signature), function(sign){
  signGenes <- signDat %>% dplyr::filter(signature == sign)
  sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
  cntMat <- rowSums(t(as.matrix(sceSub@assays@data$logcounts)))/nrow(signGenes)
  sceSub$sign <- cntMat
  sceSub$sign[which(sceSub$sign > cutOff)] <- cutOff
  sceSub$sign[which(sceSub$sign < 0)] <- 0
  lapply(treatGrps, function(treat){
    sceSubT <- sceSub[, which(sceSub$TcellGrp == treat)]
    p <- visGroup_adapt(sceSubT, 'sign', dim_red = 'UMAP') +
    sc +
    guides(colour = guide_colourbar(title = '')) +
    ggtitle(paste0(sign, ' signature - ', treat)) +
    theme_classic() + 
    theme(axis.text = element_blank(),
          axis.ticks = element_blank()) +
    labs(x='Dimension 1', y='Dimension 2')
    p
  })
})
[[1]]
[[1]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[1]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[1]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[2]]
[[2]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[2]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[2]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[3]]
[[3]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[3]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[3]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[4]]
[[4]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[4]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[4]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08

signature cut 1

cutOff <- 1
pal = colorRampPalette(rev(brewer.pal(11, 'RdBu')))
sc <- scale_colour_gradientn(colours = pal(100), limits=c(0, cutOff))

lapply(unique(signDat$signature), function(sign){
  signGenes <- signDat %>% dplyr::filter(signature == sign)
  sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
  cntMat <- rowSums(t(as.matrix(sceSub@assays@data$logcounts)))/nrow(signGenes)
  sceSub$sign <- cntMat
  sceSub$sign[which(sceSub$sign > cutOff)] <- cutOff
  sceSub$sign[which(sceSub$sign < 0)] <- 0
  lapply(treatGrps, function(treat){
    sceSubT <- sceSub[, which(sceSub$TcellGrp == treat)]
    p <- visGroup_adapt(sceSubT, 'sign', dim_red = 'UMAP') +
    sc +
    guides(colour = guide_colourbar(title = '')) +
    ggtitle(paste0(sign, ' signature - ', treat)) +
    theme_classic() + 
    theme(axis.text = element_blank(),
          axis.ticks = element_blank()) +
    labs(x='Dimension 1', y='Dimension 2')
    p
  })
})
[[1]]
[[1]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[1]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[1]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[2]]
[[2]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[2]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[2]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[3]]
[[3]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[3]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[3]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[4]]
[[4]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[4]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[4]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08
pal = viridis(100)
sc <- scale_colour_gradientn(colours = pal, limits=c(0, cutOff))
lapply(unique(signDat$signature), function(sign){
  signGenes <- signDat %>% dplyr::filter(signature == sign)
  sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
  cntMat <- rowSums(t(as.matrix(sceSub@assays@data$logcounts)))/nrow(signGenes)
  sceSub$sign <- cntMat
  sceSub$sign[which(sceSub$sign > cutOff)] <- cutOff
  sceSub$sign[which(sceSub$sign < 0)] <- 0
  lapply(treatGrps, function(treat){
    sceSubT <- sceSub[, which(sceSub$TcellGrp == treat)]
    p <- visGroup_adapt(sceSubT, 'sign', dim_red = 'UMAP') +
    sc +
    guides(colour = guide_colourbar(title = '')) +
    ggtitle(paste0(sign, ' signature - ', treat)) +
    theme_classic() + 
    theme(axis.text = element_blank(),
          axis.ticks = element_blank()) +
    labs(x='Dimension 1', y='Dimension 2')
    p
  })
})
[[1]]
[[1]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[1]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[1]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[2]]
[[2]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[2]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[2]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[3]]
[[3]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[3]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[3]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08


[[4]]
[[4]][[1]]

Version Author Date
66c2208 mluetge 2022-12-08

[[4]][[2]]

Version Author Date
66c2208 mluetge 2022-12-08

[[4]][[3]]

Version Author Date
66c2208 mluetge 2022-12-08

project signatures on heatmap

signDat <- read_delim(file = paste0(basedir,
                    "/data/GSEA/selGenesSignature2.txt"),
                    delim = "\t")
genes <- data.frame(geneID=rownames(seurat)) %>% 
  mutate(gene=gsub("^.*\\.", "", geneID))
signDat <- signDat %>% left_join(.,genes, by="gene")

## only CM, Fibroblasts, Tcells and Myeloids
selLabel <- c("Tcell","resMacrophage", "Fibroblast","infMacrophage",
              "Cardiomyocyte")
seurat <- subset(seurat, label %in% selLabel)
seurat$label2 <- seurat$label
seurat$label2[which(seurat$label %in% c("resMacrophage",
                                        "infMacrophage"))] <- "Macrophage"
seurat$label2_plus_grp <- paste0(seurat$label2, "_", seurat$TcellGrp)
table(seurat$label2_plus_grp)

Cardiomyocyte_TcellHigh  Cardiomyocyte_TcellInt  Cardiomyocyte_TcellLow 
                   1023                    1338                     871 
   Fibroblast_TcellHigh     Fibroblast_TcellInt     Fibroblast_TcellLow 
                   2894                    5120                    3162 
   Macrophage_TcellHigh     Macrophage_TcellInt     Macrophage_TcellLow 
                   3530                    1162                     604 
        Tcell_TcellHigh          Tcell_TcellInt          Tcell_TcellLow 
                   4369                     768                     231 
seurat$label2_plus_grp <- as.factor(seurat$label2_plus_grp)
Idents(seurat) <- seurat$label2_plus_grp
gapVecCol <- seq(3, length(levels(seurat$label2_plus_grp)), by=3)
gapVecDat <- signDat %>% group_by(signature) %>% summarise(cnt=n())
gapVecRow <- cumsum(gapVecDat$cnt)

colLab2 <- c("#ba4e45", "#d4cc84", "#546f82", "#8d5639")
names(colLab2) <- c("Tcell","Macrophage","Fibroblast","Cardiomyocyte")
  
pOut <- avgHeatmap(seurat = seurat, selGenes = signDat,
                     colVecIdent = colLab2, colVecCond=colTgrp,
                     ordVec=levels(seurat),
                     gapVecR=gapVecRow, gapVecC=gapVecCol,cc=FALSE,
                     cr=F, condCol=T)

Version Author Date
307a2ca mluetge 2022-12-12
seurat <- subset(seurat, TcellGrp %in% c("TcellHigh", "TcellLow"))

gapVecCol <- seq(2, length(unique(seurat$label2_plus_grp)), by=2)
gapVecDat <- signDat %>% group_by(signature) %>% summarise(cnt=n())
gapVecRow <- cumsum(gapVecDat$cnt)

pOut <- avgHeatmap(seurat = seurat, selGenes = signDat,
                     colVecIdent = colLab2, colVecCond=colTgrp,
                     ordVec=levels(seurat),
                     gapVecR=gapVecRow, gapVecC=gapVecCol,cc=FALSE,
                     cr=F, condCol=T)

session info

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] viridis_0.6.2               viridisLite_0.4.1          
 [3] RColorBrewer_1.1-3          ggpubr_0.5.0               
 [5] pheatmap_1.0.12             ggsci_2.9                  
 [7] runSeurat3_0.1.0            here_1.0.1                 
 [9] magrittr_2.0.3              SeuratObject_4.1.3         
[11] Seurat_4.3.0                forcats_0.5.2              
[13] stringr_1.5.0               dplyr_1.0.10               
[15] purrr_0.3.5                 readr_2.1.3                
[17] tidyr_1.2.1                 tibble_3.1.8               
[19] ggplot2_3.4.0               tidyverse_1.3.2            
[21] SingleCellExperiment_1.18.1 SummarizedExperiment_1.26.1
[23] Biobase_2.56.0              GenomicRanges_1.48.0       
[25] GenomeInfoDb_1.32.4         IRanges_2.30.1             
[27] S4Vectors_0.34.0            BiocGenerics_0.42.0        
[29] MatrixGenerics_1.8.1        matrixStats_0.63.0         

loaded via a namespace (and not attached):
  [1] utf8_1.2.2             spatstat.explore_3.0-5 reticulate_1.26       
  [4] tidyselect_1.2.0       htmlwidgets_1.5.4      grid_4.2.1            
  [7] Rtsne_0.16             munsell_0.5.0          codetools_0.2-18      
 [10] ica_1.0-3              future_1.29.0          miniUI_0.1.1.1        
 [13] withr_2.5.0            spatstat.random_3.0-1  colorspace_2.0-3      
 [16] progressr_0.11.0       highr_0.9              knitr_1.41            
 [19] rstudioapi_0.14        ROCR_1.0-11            ggsignif_0.6.4        
 [22] tensor_1.5             listenv_0.8.0          labeling_0.4.2        
 [25] git2r_0.30.1           GenomeInfoDbData_1.2.8 polyclip_1.10-4       
 [28] bit64_4.0.5            farver_2.1.1           rprojroot_2.0.3       
 [31] parallelly_1.32.1      vctrs_0.5.1            generics_0.1.3        
 [34] xfun_0.35              timechange_0.1.1       R6_2.5.1              
 [37] bitops_1.0-7           spatstat.utils_3.0-1   cachem_1.0.6          
 [40] DelayedArray_0.22.0    assertthat_0.2.1       vroom_1.6.0           
 [43] promises_1.2.0.1       scales_1.2.1           googlesheets4_1.0.1   
 [46] gtable_0.3.1           globals_0.16.2         goftest_1.2-3         
 [49] workflowr_1.7.0        rlang_1.0.6            splines_4.2.1         
 [52] rstatix_0.7.1          lazyeval_0.2.2         gargle_1.2.1          
 [55] spatstat.geom_3.0-3    broom_1.0.1            yaml_2.3.6            
 [58] reshape2_1.4.4         abind_1.4-5            modelr_0.1.10         
 [61] backports_1.4.1        httpuv_1.6.6           tools_4.2.1           
 [64] ellipsis_0.3.2         jquerylib_0.1.4        ggridges_0.5.4        
 [67] Rcpp_1.0.9             plyr_1.8.8             zlibbioc_1.42.0       
 [70] RCurl_1.98-1.9         deldir_1.0-6           pbapply_1.6-0         
 [73] cowplot_1.1.1          zoo_1.8-11             haven_2.5.1           
 [76] ggrepel_0.9.2          cluster_2.1.4          fs_1.5.2              
 [79] data.table_1.14.6      scattermore_0.8        lmtest_0.9-40         
 [82] reprex_2.0.2           RANN_2.6.1             googledrive_2.0.0     
 [85] whisker_0.4            fitdistrplus_1.1-8     hms_1.1.2             
 [88] patchwork_1.1.2        mime_0.12              evaluate_0.18         
 [91] xtable_1.8-4           readxl_1.4.1           gridExtra_2.3         
 [94] compiler_4.2.1         KernSmooth_2.23-20     crayon_1.5.2          
 [97] htmltools_0.5.3        later_1.3.0            tzdb_0.3.0            
[100] lubridate_1.9.0        DBI_1.1.3              dbplyr_2.2.1          
[103] MASS_7.3-58.1          Matrix_1.5-3           car_3.1-1             
[106] cli_3.4.1              parallel_4.2.1         igraph_1.3.5          
[109] pkgconfig_2.0.3        sp_1.5-1               plotly_4.10.1         
[112] spatstat.sparse_3.0-0  xml2_1.3.3             bslib_0.4.1           
[115] XVector_0.36.0         rvest_1.0.3            digest_0.6.30         
[118] sctransform_0.3.5      RcppAnnoy_0.0.20       spatstat.data_3.0-0   
[121] rmarkdown_2.18         cellranger_1.1.0       leiden_0.4.3          
[124] uwot_0.1.14            shiny_1.7.3            lifecycle_1.0.3       
[127] nlme_3.1-160           jsonlite_1.8.3         carData_3.0-5         
[130] fansi_1.0.3            pillar_1.8.1           lattice_0.20-45       
[133] fastmap_1.1.0          httr_1.4.4             survival_3.4-0        
[136] glue_1.6.2             png_0.1-8              bit_4.0.5             
[139] stringi_1.7.8          sass_0.4.4             irlba_2.3.5.1         
[142] future.apply_1.10.0   
date()
[1] "Mon Dec 12 17:18:39 2022"

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] viridis_0.6.2               viridisLite_0.4.1          
 [3] RColorBrewer_1.1-3          ggpubr_0.5.0               
 [5] pheatmap_1.0.12             ggsci_2.9                  
 [7] runSeurat3_0.1.0            here_1.0.1                 
 [9] magrittr_2.0.3              SeuratObject_4.1.3         
[11] Seurat_4.3.0                forcats_0.5.2              
[13] stringr_1.5.0               dplyr_1.0.10               
[15] purrr_0.3.5                 readr_2.1.3                
[17] tidyr_1.2.1                 tibble_3.1.8               
[19] ggplot2_3.4.0               tidyverse_1.3.2            
[21] SingleCellExperiment_1.18.1 SummarizedExperiment_1.26.1
[23] Biobase_2.56.0              GenomicRanges_1.48.0       
[25] GenomeInfoDb_1.32.4         IRanges_2.30.1             
[27] S4Vectors_0.34.0            BiocGenerics_0.42.0        
[29] MatrixGenerics_1.8.1        matrixStats_0.63.0         

loaded via a namespace (and not attached):
  [1] utf8_1.2.2             spatstat.explore_3.0-5 reticulate_1.26       
  [4] tidyselect_1.2.0       htmlwidgets_1.5.4      grid_4.2.1            
  [7] Rtsne_0.16             munsell_0.5.0          codetools_0.2-18      
 [10] ica_1.0-3              future_1.29.0          miniUI_0.1.1.1        
 [13] withr_2.5.0            spatstat.random_3.0-1  colorspace_2.0-3      
 [16] progressr_0.11.0       highr_0.9              knitr_1.41            
 [19] rstudioapi_0.14        ROCR_1.0-11            ggsignif_0.6.4        
 [22] tensor_1.5             listenv_0.8.0          labeling_0.4.2        
 [25] git2r_0.30.1           GenomeInfoDbData_1.2.8 polyclip_1.10-4       
 [28] bit64_4.0.5            farver_2.1.1           rprojroot_2.0.3       
 [31] parallelly_1.32.1      vctrs_0.5.1            generics_0.1.3        
 [34] xfun_0.35              timechange_0.1.1       R6_2.5.1              
 [37] bitops_1.0-7           spatstat.utils_3.0-1   cachem_1.0.6          
 [40] DelayedArray_0.22.0    assertthat_0.2.1       vroom_1.6.0           
 [43] promises_1.2.0.1       scales_1.2.1           googlesheets4_1.0.1   
 [46] gtable_0.3.1           globals_0.16.2         goftest_1.2-3         
 [49] workflowr_1.7.0        rlang_1.0.6            splines_4.2.1         
 [52] rstatix_0.7.1          lazyeval_0.2.2         gargle_1.2.1          
 [55] spatstat.geom_3.0-3    broom_1.0.1            yaml_2.3.6            
 [58] reshape2_1.4.4         abind_1.4-5            modelr_0.1.10         
 [61] backports_1.4.1        httpuv_1.6.6           tools_4.2.1           
 [64] ellipsis_0.3.2         jquerylib_0.1.4        ggridges_0.5.4        
 [67] Rcpp_1.0.9             plyr_1.8.8             zlibbioc_1.42.0       
 [70] RCurl_1.98-1.9         deldir_1.0-6           pbapply_1.6-0         
 [73] cowplot_1.1.1          zoo_1.8-11             haven_2.5.1           
 [76] ggrepel_0.9.2          cluster_2.1.4          fs_1.5.2              
 [79] data.table_1.14.6      scattermore_0.8        lmtest_0.9-40         
 [82] reprex_2.0.2           RANN_2.6.1             googledrive_2.0.0     
 [85] whisker_0.4            fitdistrplus_1.1-8     hms_1.1.2             
 [88] patchwork_1.1.2        mime_0.12              evaluate_0.18         
 [91] xtable_1.8-4           readxl_1.4.1           gridExtra_2.3         
 [94] compiler_4.2.1         KernSmooth_2.23-20     crayon_1.5.2          
 [97] htmltools_0.5.3        later_1.3.0            tzdb_0.3.0            
[100] lubridate_1.9.0        DBI_1.1.3              dbplyr_2.2.1          
[103] MASS_7.3-58.1          Matrix_1.5-3           car_3.1-1             
[106] cli_3.4.1              parallel_4.2.1         igraph_1.3.5          
[109] pkgconfig_2.0.3        sp_1.5-1               plotly_4.10.1         
[112] spatstat.sparse_3.0-0  xml2_1.3.3             bslib_0.4.1           
[115] XVector_0.36.0         rvest_1.0.3            digest_0.6.30         
[118] sctransform_0.3.5      RcppAnnoy_0.0.20       spatstat.data_3.0-0   
[121] rmarkdown_2.18         cellranger_1.1.0       leiden_0.4.3          
[124] uwot_0.1.14            shiny_1.7.3            lifecycle_1.0.3       
[127] nlme_3.1-160           jsonlite_1.8.3         carData_3.0-5         
[130] fansi_1.0.3            pillar_1.8.1           lattice_0.20-45       
[133] fastmap_1.1.0          httr_1.4.4             survival_3.4-0        
[136] glue_1.6.2             png_0.1-8              bit_4.0.5             
[139] stringi_1.7.8          sass_0.4.4             irlba_2.3.5.1         
[142] future.apply_1.10.0