DE genes iLN WT versus Ltbr floxed

Author

Mechthild Lütge

Published

July 1, 2023

load packages

suppressPackageStartupMessages({
  library(tidyverse)
  library(Seurat)
  library(magrittr)
  library(dplyr)
  library(purrr)
  library(ggplot2)
  library(here)
  library(runSeurat3)
  library(SingleCellExperiment)
  library(RColorBrewer)
  library(pheatmap)
  library(scater)
  library(scran)
  library(ggsci)
})

heatmap function

avgHeatmap <- function(seurat, selGenes, colVecIdent, colVecCond=NULL,
                       ordVec=NULL, gapVecR=NULL, gapVecC=NULL,cc=FALSE,
                       cr=FALSE, condCol=FALSE){
  
  selGenes <- selGenes$gene
  
  ## assay data
  clusterAssigned <- as.data.frame(Idents(seurat)) %>%
  dplyr::mutate(cell=rownames(.))
  colnames(clusterAssigned)[1] <- "ident"
  seuratDat <- GetAssayData(seurat)
  
  ## genes of interest
  genes <- data.frame(gene=rownames(seurat)) %>% 
    mutate(geneID=gsub("^.*\\.", "", gene)) %>% filter(geneID %in% selGenes)

  ## matrix with averaged cnts per ident
  logNormExpres <- as.data.frame(t(as.matrix(
    seuratDat[which(rownames(seuratDat) %in% genes$gene),])))
  logNormExpres <- logNormExpres %>% dplyr::mutate(cell=rownames(.)) %>%
    dplyr::left_join(.,clusterAssigned, by=c("cell")) %>%
    dplyr::select(-cell) %>% dplyr::group_by(ident) %>%
    dplyr::summarise_all(mean)
  logNormExpresMa <- logNormExpres %>% dplyr::select(-ident) %>% as.matrix()
  rownames(logNormExpresMa) <- logNormExpres$ident
  logNormExpresMa <- t(logNormExpresMa)
  rownames(logNormExpresMa) <- gsub("^.*?\\.","",rownames(logNormExpresMa))
  
  ## remove genes if they are all the same in all groups
  ind <- apply(logNormExpresMa, 1, sd) == 0
  logNormExpresMa <- logNormExpresMa[!ind,]
  genes <- genes[!ind,]

  ## color columns according to cluster
  annotation_col <- as.data.frame(gsub("(^.*?_)","",
                                       colnames(logNormExpresMa)))%>%
    dplyr::mutate(celltype=gsub("(_.*$)","",colnames(logNormExpresMa)))
  colnames(annotation_col)[1] <- "col1"
  annotation_col <- annotation_col %>%
    dplyr::mutate(cond = gsub(".*_","",col1)) %>%
    dplyr::select(cond, celltype)
  rownames(annotation_col) <- colnames(logNormExpresMa) 

  ann_colors = list(
      cond = colVecCond,
      celltype=colVecIdent)
  if(is.null(ann_colors$cond)){
    annotation_col$cond <- NULL
  }
  
  ## adjust order
  logNormExpresMa <- logNormExpresMa[selGenes,]
  if(is.null(ordVec)){
    ordVec <- levels(seurat)
  }
  logNormExpresMa <- logNormExpresMa[,ordVec]

  ## scaled row-wise
  pheatmap(logNormExpresMa, scale="row" ,treeheight_row = 0, cluster_rows = cr, 
         cluster_cols = cc,
         color = colorRampPalette(c("#2166AC", "#F7F7F7", "#B2182B"))(50),
         annotation_col = annotation_col, cellwidth=15, cellheight=10,
         annotation_colors = ann_colors, gaps_row = gapVecR, gaps_col = gapVecC)
}

set dir and load sample

basedir <- here()
seurat <- readRDS(file = paste0(basedir,
                              "/data/WT_allTime_iLNonly_WtplusLtbr_EYFPonly_labelTrans",
                              "_seurat.rds"))
table(seurat$EYFP, seurat$age)
     
        3w   8w E17to7wk  E18   P7
  pos 4398 8790      303  245  730
table(seurat$cond)

 LTbR    WT 
  636 13830 
colCond <- c("#446a7f", "#cb7457")
names(colCond) <- c("LTbR", "WT")

colAge <- c("#440154FF", "#3B528BFF", "#21908CFF", "#5DC863FF", "#FDE725FF")
names(colAge) <- c("E18" , "P7", "3w", "8w","E17to7wk")

colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f",  "#25328a",
            "#b6856e", "#0073C2FF", "#e3953d")
names(colPal) <- c("12", "10", "5", "6", "3", "11", "0",  "8",  "4",  "2",  "9",  "7", "1" )

colPal2 <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f",  "#25328a",
            "#b6856e", "#0073C2FF", "#e3953d", "#cacaca")
names(colPal2) <- c("12", "10", "5", "6", "3", "11", "0",  "8",  "4",  "2",  "9",  "7", "1",
                    "<8w")

colDat <- colDat <- c(pal_npg()(10),pal_futurama()(12), pal_aaas()(10),
                      pal_jama()(8))[1:length(unique(seurat$dataset))]
names(colDat) <- unique(seurat$dataset)


colLab <- c("#42a071", "#900C3F","#b66e8d", "#61a4ba", "#424671", "#003C67FF",
            "#e3953d", "#714542", "#b6856e", "#a4a4a4")

names(colLab) <- c("FDC/MRC", "TRC", "TBRC", "MedRC/IFRC", "MedRC" , "actMedRC",
                   "PRC", "Pi16+RC", "VSMC", "unassigned")

DimPlot all

clustering

DimPlot(seurat, reduction = "umap", group.by = "RNA_snn_res.0.4",
        cols = colPal)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seurat, reduction = "umap", group.by = "RNA_snn_res.0.4", pt.size=1,
        cols = colPal)+
  theme_void()

clustering split by cond

DimPlot(seurat, reduction = "umap", group.by = "RNA_snn_res.0.4", pt.size=1,
        cols = colPal, split.by = "cond")+
  theme_void()

seurat$clusterAdult <- as.character(seurat$RNA_snn_res.0.4)
seurat$clusterAdult[which(seurat$age %in% c("P7", "E18", "3w"))] <- "<8w"

DimPlot(seurat, reduction = "umap", group.by = "clusterAdult", pt.size=1,
        cols = colPal2, split.by = "cond")+
  theme_void()

seuratSub <- subset(seurat, age %in% c("E17to7wk", "8w"))
DimPlot(seuratSub, reduction = "umap", group.by = "RNA_snn_res.0.4", pt.size=1,
        cols = colPal, split.by = "cond")+
  theme_void()

vis age

DimPlot(seurat, reduction = "umap", group.by = "age",
        cols = colAge)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seurat, reduction = "umap", group.by = "age", pt.size=0.5,
        cols = colAge)+
  theme_void()

age split by cond

DimPlot(seurat, reduction = "umap", group.by = "age", pt.size=1,
        cols = colAge, split.by = "cond", shuffle = T)+
  theme_void()

vis label

DimPlot(seurat, reduction = "umap", group.by = "label",
        cols = colLab, shuffle=T)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seurat, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, shuffle=T)+
  theme_void()

vis cond

DimPlot(seurat, reduction = "umap", group.by = "cond",
        cols = colCond, shuffle=T)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seurat, reduction = "umap", group.by = "cond", pt.size=1,
        cols = colCond, shuffle=T)+
  theme_void()

colCond2 <- c("#900C3F" ,"#a4a4a4")
names(colCond2) <- c("LTbR", "WT")

DimPlot(seurat, reduction = "umap", group.by = "cond", pt.size=1,
        cols = colCond2, order="LTbR")+
  theme_void()

DimPlot(seurat, reduction = "umap", group.by = "cond", pt.size=1,
        cols = colCond2, shuffle=T)+
  theme_void()

Counts

knitr::kable(table(seurat$RNA_snn_res.0.4, seurat$cond))
LTbR WT
0 74 3511
1 16 3181
2 29 3089
3 15 1002
4 1 739
5 427 220
6 2 615
7 0 553
8 4 428
9 68 270
10 0 116
11 0 106
seuratSub <- subset(seurat, age %in% c("E17to7wk", "8w"))
knitr::kable(table(seuratSub$RNA_snn_res.0.4, seuratSub$cond))
LTbR WT
0 74 3291
1 16 2123
2 29 1745
3 15 394
4 1 46
5 427 171
6 2 125
7 0 0
8 4 423
9 68 81
10 0 57
11 0 1
## relative abundance per cond
clustCond <- data.frame(table(seurat$cond, seurat$RNA_snn_res.0.4))
colnames(clustCond) <- c("cond", "intCluster", "cnt")
condTot <- data.frame(table(seurat$cond))
colnames(condTot) <- c("cond", "tot")
colPaldat <- data.frame(col=colPal) %>%
  rownames_to_column(var = "intCluster")
clustDat2 <- clustCond %>%  left_join(., condTot, by = "cond") %>% 
  mutate(relAb = cnt/tot * 100) %>%
  left_join(., colPaldat, by = "intCluster")

knitr::kable(clustDat2)
cond intCluster cnt tot relAb col
LTbR 0 74 636 11.6352201 #61a4ba
WT 0 3511 13830 25.3868402 #61a4ba
LTbR 1 16 636 2.5157233 #e3953d
WT 1 3181 13830 23.0007231 #e3953d
LTbR 2 29 636 4.5597484 #25328a
WT 2 3089 13830 22.3355025 #25328a
LTbR 3 15 636 2.3584906 #900C3F
WT 3 1002 13830 7.2451193 #900C3F
LTbR 4 1 636 0.1572327 #54a87f
WT 4 739 13830 5.3434563 #54a87f
LTbR 5 427 636 67.1383648 #FF5733
WT 5 220 13830 1.5907448 #FF5733
LTbR 6 2 636 0.3144654 #C70039
WT 6 615 13830 4.4468547 #C70039
LTbR 7 0 636 0.0000000 #0073C2FF
WT 7 553 13830 3.9985539 #0073C2FF
LTbR 8 4 636 0.6289308 #6178ba
WT 8 428 13830 3.0947216 #6178ba
LTbR 9 68 636 10.6918239 #b6856e
WT 9 270 13830 1.9522777 #b6856e
LTbR 10 0 636 0.0000000 #FFC300
WT 10 116 13830 0.8387563 #FFC300
LTbR 11 0 636 0.0000000 #b66e8d
WT 11 106 13830 0.7664497 #b66e8d
lapply(names(colCond), function(co){
  clustDat2sel <- clustDat2 %>% filter(cond==co)
  pie(clustDat2sel$relAb,
      labels = clustDat2sel$intCluster,
      col = clustDat2sel$col,
      main = paste0(co))
})

[[1]]
NULL

[[2]]
NULL

Marker genes additional cluster ltbr floxed

Idents(seuratSub) <- seuratSub$RNA_snn_res.0.4

tooSmall <- names(which(table(seuratSub$RNA_snn_res.0.4) < 10))
seuratSub <- subset(seuratSub, RNA_snn_res.0.4 %in% tooSmall, invert = T)
markers <- FindMarkers(seuratSub, ident.1 = "5", only.pos = T)

## plot top 20 marker
markerDat <- markers %>% rownames_to_column(var = "geneID") %>% 
  slice_min(p_val_adj, n=20) %>% slice_max(avg_log2FC, n=20)
genes <- data.frame(geneID=rownames(seuratSub)) %>%
  mutate(gene=gsub(".*\\.", "",  geneID)) 

markerAll <- markerDat %>% left_join(., genes, by="geneID")

seuratSub$clusterSel <- as.character(seuratSub$RNA_snn_res.0.4)
Idents(seuratSub) <- seuratSub$clusterSel

DotPlot(seuratSub, assay="RNA", features = rev(markerAll$geneID), scale =T,
        cluster.idents = T) +
  scale_color_viridis_c() +
  coord_flip() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  scale_x_discrete(breaks=rev(markerAll$geneID), labels=rev(markerAll$gene)) +
  xlab("") + ylab("")

DotPlot(seuratSub, assay="RNA", features = rev(markerAll$geneID), scale =F,
        cluster.idents = F) +
  scale_color_viridis_c() +
  coord_flip() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  scale_x_discrete(breaks=rev(markerAll$geneID), labels=rev(markerAll$gene)) +
  xlab("") + ylab("")

##### all ltbr vs WT
Idents(seuratSub) <- seuratSub$cond
markers <- FindMarkers(seuratSub, ident.1 = "LTbR", only.pos = T)

## plot top 20 marker
markerDat <- markers %>% rownames_to_column(var = "geneID") %>% 
  slice_min(p_val_adj, n=20) %>% slice_max(avg_log2FC, n=20)
genes <- data.frame(geneID=rownames(seuratSub)) %>%
  mutate(gene=gsub(".*\\.", "",  geneID)) 

markerAll <- markerDat %>% left_join(., genes, by="geneID")

Idents(seuratSub) <- seuratSub$clusterSel

DotPlot(seuratSub, assay="RNA", features = rev(markerAll$geneID), scale =T,
        cluster.idents = F) +
  scale_color_viridis_c() +
  coord_flip() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  scale_x_discrete(breaks=rev(markerAll$geneID), labels=rev(markerAll$gene)) +
  xlab("") + ylab("")

DotPlot(seuratSub, assay="RNA", features = rev(markerAll$geneID), scale =F,
        cluster.idents = F) +
  scale_color_viridis_c() +
  coord_flip() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  scale_x_discrete(breaks=rev(markerAll$geneID), labels=rev(markerAll$gene)) +
  xlab("") + ylab("")

session info

sessionInfo()
R version 4.3.0 (2023-04-21)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.4.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] ggsci_3.0.1                 scran_1.28.2               
 [3] scater_1.28.0               scuttle_1.10.3             
 [5] pheatmap_1.0.12             RColorBrewer_1.1-3         
 [7] SingleCellExperiment_1.22.0 SummarizedExperiment_1.30.2
 [9] Biobase_2.60.0              GenomicRanges_1.52.1       
[11] GenomeInfoDb_1.36.4         IRanges_2.36.0             
[13] S4Vectors_0.40.1            BiocGenerics_0.48.0        
[15] MatrixGenerics_1.12.3       matrixStats_1.2.0          
[17] runSeurat3_0.1.0            here_1.0.1                 
[19] magrittr_2.0.3              Seurat_5.0.2               
[21] SeuratObject_5.0.1          sp_2.1-3                   
[23] lubridate_1.9.3             forcats_1.0.0              
[25] stringr_1.5.1               dplyr_1.1.4                
[27] purrr_1.0.2                 readr_2.1.5                
[29] tidyr_1.3.1                 tibble_3.2.1               
[31] ggplot2_3.5.0               tidyverse_2.0.0            

loaded via a namespace (and not attached):
  [1] RcppAnnoy_0.0.22          splines_4.3.0            
  [3] later_1.3.2               bitops_1.0-7             
  [5] polyclip_1.10-6           fastDummies_1.7.3        
  [7] lifecycle_1.0.4           edgeR_3.42.4             
  [9] rprojroot_2.0.4           globals_0.16.2           
 [11] lattice_0.22-5            MASS_7.3-60.0.1          
 [13] limma_3.56.2              plotly_4.10.4            
 [15] rmarkdown_2.26            yaml_2.3.8               
 [17] metapod_1.8.0             httpuv_1.6.14            
 [19] sctransform_0.4.1         spam_2.10-0              
 [21] spatstat.sparse_3.0-3     reticulate_1.35.0        
 [23] cowplot_1.1.3             pbapply_1.7-2            
 [25] abind_1.4-5               zlibbioc_1.46.0          
 [27] Rtsne_0.17                presto_1.0.0             
 [29] RCurl_1.98-1.14           GenomeInfoDbData_1.2.10  
 [31] ggrepel_0.9.5             irlba_2.3.5.1            
 [33] listenv_0.9.1             spatstat.utils_3.0-4     
 [35] goftest_1.2-3             RSpectra_0.16-1          
 [37] dqrng_0.3.2               spatstat.random_3.2-3    
 [39] fitdistrplus_1.1-11       parallelly_1.37.1        
 [41] DelayedMatrixStats_1.22.6 leiden_0.4.3.1           
 [43] codetools_0.2-19          DelayedArray_0.26.7      
 [45] tidyselect_1.2.0          farver_2.1.1             
 [47] viridis_0.6.5             ScaledMatrix_1.8.1       
 [49] spatstat.explore_3.2-6    jsonlite_1.8.8           
 [51] BiocNeighbors_1.18.0      ellipsis_0.3.2           
 [53] progressr_0.14.0          ggridges_0.5.6           
 [55] survival_3.5-8            tools_4.3.0              
 [57] ica_1.0-3                 Rcpp_1.0.12              
 [59] glue_1.7.0                gridExtra_2.3            
 [61] xfun_0.42                 withr_3.0.0              
 [63] fastmap_1.1.1             bluster_1.10.0           
 [65] fansi_1.0.6               digest_0.6.34            
 [67] rsvd_1.0.5                timechange_0.3.0         
 [69] R6_2.5.1                  mime_0.12                
 [71] colorspace_2.1-0          scattermore_1.2          
 [73] tensor_1.5                spatstat.data_3.0-4      
 [75] utf8_1.2.4                generics_0.1.3           
 [77] data.table_1.15.2         httr_1.4.7               
 [79] htmlwidgets_1.6.4         S4Arrays_1.0.6           
 [81] uwot_0.1.16               pkgconfig_2.0.3          
 [83] gtable_0.3.4              lmtest_0.9-40            
 [85] XVector_0.40.0            htmltools_0.5.7          
 [87] dotCall64_1.1-1           scales_1.3.0             
 [89] png_0.1-8                 knitr_1.45               
 [91] rstudioapi_0.15.0         tzdb_0.4.0               
 [93] reshape2_1.4.4            nlme_3.1-164             
 [95] zoo_1.8-12                KernSmooth_2.23-22       
 [97] vipor_0.4.7               parallel_4.3.0           
 [99] miniUI_0.1.1.1            pillar_1.9.0             
[101] grid_4.3.0                vctrs_0.6.5              
[103] RANN_2.6.1                promises_1.2.1           
[105] BiocSingular_1.16.0       beachmat_2.16.0          
[107] xtable_1.8-4              cluster_2.1.6            
[109] beeswarm_0.4.0            evaluate_0.23            
[111] locfit_1.5-9.9            cli_3.6.2                
[113] compiler_4.3.0            rlang_1.1.3              
[115] crayon_1.5.2              future.apply_1.11.1      
[117] labeling_0.4.3            plyr_1.8.9               
[119] ggbeeswarm_0.7.2          stringi_1.8.3            
[121] viridisLite_0.4.2         deldir_2.0-4             
[123] BiocParallel_1.34.2       munsell_0.5.0            
[125] lazyeval_0.2.2            spatstat.geom_3.2-9      
[127] Matrix_1.6-5              RcppHNSW_0.6.0           
[129] hms_1.1.3                 patchwork_1.2.0          
[131] sparseMatrixStats_1.12.2  future_1.33.1            
[133] statmod_1.5.0             shiny_1.8.0              
[135] ROCR_1.0-11               igraph_2.0.2             
date()
[1] "Wed Apr 24 10:04:29 2024"