Integrate human LN immune cells

Author

Mechthild Lütge

Published

April 5, 2023

load packages

suppressPackageStartupMessages({
  library(tidyverse)
  library(Seurat)
  library(magrittr)
  library(dplyr)
  library(purrr)
  library(ggplot2)
  library(here)
  library(runSeurat3)
  library(ggsci)
})

set dir

basedir <- here()
seurat <- readRDS(file=paste0(basedir,
                            "/data/AllPatWithoutCM_IMMMerged_seurat.rds"))

visualize data

clustering

colPal <- c(pal_nejm()(8),pal_futurama()(12))[1:length(levels(seurat))]
names(colPal) <- levels(seurat)

## visualize input data
DimPlot(seurat, reduction = "umap", cols=colPal, raster = F)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

patient

colPat <- c(pal_jco()(10),pal_futurama()(12))[1:length(unique(seurat$patient))]
names(colPat) <- unique(seurat$patient)

## visualize input data
DimPlot(seurat, reduction = "umap", cols=colPat, group.by = "patient",
        raster = F)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

condition

colCond <- pal_igv()(length(unique(seurat$cond)))
names(colCond) <- unique(seurat$cond)

## visualize input data
DimPlot(seurat, reduction = "umap", cols=colCond, group.by = "cond", raster = F)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

origin

colOrig <- pal_aaas()(length(unique(seurat$origin)))
names(colCond) <- unique(seurat$cond)

## visualize input data
DimPlot(seurat, reduction = "umap", cols=colOrig, group.by = "origin", raster = F)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

integrate across patient

Idents(seurat) <- seurat$patient

seurat.list <- SplitObject(object = seurat, split.by = "patient")
for (i in 1:length(x = seurat.list)) {
    seurat.list[[i]] <- NormalizeData(object = seurat.list[[i]],
                                      verbose = FALSE)
    seurat.list[[i]] <- FindVariableFeatures(object = seurat.list[[i]], 
        selection.method = "vst", nfeatures = 2000, verbose = FALSE)
}

seurat.anchors <- FindIntegrationAnchors(object.list = seurat.list, dims = 1:15)
seurat.int <- IntegrateData(anchorset = seurat.anchors, dims = 1:15)
DefaultAssay(object = seurat.int) <- "integrated"

# rerun seurat
seurat.int <- ScaleData(object = seurat.int, verbose = FALSE,
                        features = rownames(seurat.int))
seurat.int <- RunPCA(object = seurat.int, npcs = 20, verbose = FALSE)
seurat.int <- RunTSNE(object = seurat.int, reduction = "pca", dims = 1:20)
seurat.int <- RunUMAP(object = seurat.int, reduction = "pca", dims = 1:20)

seurat.int <- FindNeighbors(object = seurat.int, reduction = "pca", dims = 1:20)
res <- c(0.6,0.8,0.4,0.25)
for(i in 1:length(res)){
  seurat.int <- FindClusters(object = seurat.int, resolution = res[i],
                             random.seed = 1234)
}

DefaultAssay(object = seurat.int) <- "RNA"
seurat.int$intCluster <- seurat.int$integrated_snn_res.0.25
Idents(seurat.int) <- seurat.int$intCluster

visualize int data

clustering

seurat.int <- readRDS(file=paste0(basedir,
                            "/data/AllPatWithoutCM_IMMMerged_integrated_seurat.rds"))

Idents(seurat.int) <- seurat.int$intCluster
colPal <- c(pal_nejm()(8),pal_futurama()(12))[1:length(levels(seurat.int))]
names(colPal) <- levels(seurat.int)

## visualize input data
DimPlot(seurat.int, reduction = "umap", cols=colPal, raster = F)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

patient

colPat <- c(pal_jco()(10),
            pal_futurama()(12))[1:length(unique(seurat.int$patient))]
names(colPat) <- unique(seurat.int$patient)

## visualize input data
DimPlot(seurat.int, reduction = "umap", cols=colPat, group.by = "patient",
        raster = F)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

cond

colTon <- pal_igv()(length(unique(seurat.int$cond)))
names(colTon) <- unique(seurat.int$cond)

## visualize input data
DimPlot(seurat.int, reduction = "umap", cols=colTon, group.by = "cond", 
        raster = F)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

save seurat object

saveRDS(seurat.int, file=paste0(basedir,
                            "/data/AllPatWithoutCM_IMMMerged_integrated_seurat.rds"))

session info

sessionInfo()
R version 4.3.0 (2023-04-21)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.4.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggsci_3.0.1        runSeurat3_0.1.0   here_1.0.1         magrittr_2.0.3     Seurat_5.0.2      
 [6] SeuratObject_5.0.1 sp_2.1-3           lubridate_1.9.3    forcats_1.0.0      stringr_1.5.1     
[11] dplyr_1.1.4        purrr_1.0.2        readr_2.1.5        tidyr_1.3.1        tibble_3.2.1      
[16] ggplot2_3.5.0      tidyverse_2.0.0   

loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3          rstudioapi_0.15.0           jsonlite_1.8.8             
  [4] spatstat.utils_3.0-4        farver_2.1.1                rmarkdown_2.26             
  [7] zlibbioc_1.46.0             vctrs_0.6.5                 ROCR_1.0-11                
 [10] spatstat.explore_3.2-6      RCurl_1.98-1.14             S4Arrays_1.0.6             
 [13] htmltools_0.5.7             sctransform_0.4.1           parallelly_1.37.1          
 [16] KernSmooth_2.23-22          htmlwidgets_1.6.4           ica_1.0-3                  
 [19] plyr_1.8.9                  plotly_4.10.4               zoo_1.8-12                 
 [22] igraph_2.0.2                mime_0.12                   lifecycle_1.0.4            
 [25] pkgconfig_2.0.3             Matrix_1.6-5                R6_2.5.1                   
 [28] fastmap_1.1.1               GenomeInfoDbData_1.2.10     MatrixGenerics_1.12.3      
 [31] fitdistrplus_1.1-11         future_1.33.1               shiny_1.8.0                
 [34] digest_0.6.34               colorspace_2.1-0            S4Vectors_0.40.1           
 [37] patchwork_1.2.0             rprojroot_2.0.4             tensor_1.5                 
 [40] RSpectra_0.16-1             irlba_2.3.5.1               GenomicRanges_1.52.1       
 [43] labeling_0.4.3              progressr_0.14.0            fansi_1.0.6                
 [46] spatstat.sparse_3.0-3       timechange_0.3.0            httr_1.4.7                 
 [49] polyclip_1.10-6             abind_1.4-5                 compiler_4.3.0             
 [52] withr_3.0.0                 fastDummies_1.7.3           MASS_7.3-60.0.1            
 [55] DelayedArray_0.26.7         tools_4.3.0                 lmtest_0.9-40              
 [58] httpuv_1.6.14               future.apply_1.11.1         goftest_1.2-3              
 [61] glue_1.7.0                  nlme_3.1-164                promises_1.2.1             
 [64] grid_4.3.0                  Rtsne_0.17                  cluster_2.1.6              
 [67] reshape2_1.4.4              generics_0.1.3              gtable_0.3.4               
 [70] spatstat.data_3.0-4         tzdb_0.4.0                  data.table_1.15.2          
 [73] hms_1.1.3                   XVector_0.40.0              utf8_1.2.4                 
 [76] BiocGenerics_0.48.0         spatstat.geom_3.2-9         RcppAnnoy_0.0.22           
 [79] ggrepel_0.9.5               RANN_2.6.1                  pillar_1.9.0               
 [82] spam_2.10-0                 RcppHNSW_0.6.0              later_1.3.2                
 [85] splines_4.3.0               lattice_0.22-5              survival_3.5-8             
 [88] deldir_2.0-4                tidyselect_1.2.0            SingleCellExperiment_1.22.0
 [91] miniUI_0.1.1.1              pbapply_1.7-2               knitr_1.45                 
 [94] gridExtra_2.3               IRanges_2.36.0              SummarizedExperiment_1.30.2
 [97] scattermore_1.2             stats4_4.3.0                xfun_0.42                  
[100] Biobase_2.60.0              matrixStats_1.2.0           pheatmap_1.0.12            
[103] stringi_1.8.3               lazyeval_0.2.2              yaml_2.3.8                 
[106] evaluate_0.23               codetools_0.2-19            cli_3.6.2                  
[109] uwot_0.1.16                 xtable_1.8-4                reticulate_1.35.0          
[112] munsell_0.5.0               GenomeInfoDb_1.36.4         Rcpp_1.0.12                
[115] globals_0.16.2              spatstat.random_3.2-3       png_0.1-8                  
[118] parallel_4.3.0              ellipsis_0.3.2              dotCall64_1.1-1            
[121] bitops_1.0-7                listenv_0.9.1               viridisLite_0.4.2          
[124] scales_1.3.0                ggridges_0.5.6              crayon_1.5.2               
[127] leiden_0.4.3.1              rlang_1.1.3                 cowplot_1.1.3              
date()
[1] "Wed Mar 13 22:09:31 2024"