visualize activated immune cells human LN

Author

Load packages

## load packages 
suppressPackageStartupMessages({
  library(dplyr)
  library(reshape2)
  library(ggplot2)
  library(cowplot)
  library(purrr)
  library(Seurat)
  library(tidyverse)
  library(ggpubr)
  library(runSeurat3)
  library(here)
  library(ggsci)
  library(pheatmap)
  library(scater)
})

load seurat object

basedir <- here()
seurat <- readRDS(file= paste0(basedir,
                            "/data/AllPatWithoutCM_IMMMerged_integrated_label",
                            "_seurat.rds"))

Idents(seurat) <- seurat$label
seurat <- subset(seurat, cond2 == "activated")

## set col palettes
colPal <- colPal <- c(pal_flatui()(10), pal_frontiers()(8),
                      pal_nejm()(8))[1:length(unique(seurat$RNA_snn_res.0.25))]
names(colPal) <- unique(seurat$RNA_snn_res.0.25)


colPat <- c(pal_nejm()(7),pal_futurama()(12))[1:length(unique(seurat$patient))]
names(colPat) <- unique(seurat$patient)
colCond <- c("#6692a3","#971c1c","#d17d67")
names(colCond) <- unique(seurat$cond)
colOri <- pal_npg()(length(unique(seurat$origin)))
names(colOri) <- unique(seurat$origin)
colCond2 <- c("#6692a3","#971c1c")
names(colCond2) <- c("resting", "activated")

colLab <- c("#2a3b30", "#0b6647", "#54907e", "#94c78a", "#6f9568", 
            "#8f2810", "#a83e0b", "#ce6915","#d08821", "#d0ac21","#b9bb20",
            "#486584","#56799e", "#4b5397", "#8873d3", "#6e3e7a")
            
names(colLab) <- c("preB", "naiveB", "GCB", "MBC", "plasmaCell",
                   "naiveCD4-1", "naiveCD4-2", "naiveCD4-3", "Treg", "CD8Tcm",
                    "CTL/NKcell",
                   "ILC3","pDC-1", "pDC-2", "Mph/DC-1", "Mph/DC-2")

visualize data

DimPlot(seurat, reduction = "umap", cols=colLab)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seurat, reduction = "umap", cols=colLab, pt.size=1)+
  theme_void()

clustering

## visualize input data
DimPlot(seurat, reduction = "umap", cols=colPal, group.by = "RNA_snn_res.0.25")+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seurat, reduction = "umap", group.by = "RNA_snn_res.0.25",
        cols=colPal, pt.size=0.5)+
  theme_void()

patient

## visualize input data
DimPlot(seurat, reduction = "umap", cols=colPat, group.by = "patient")+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seurat, reduction = "umap", cols=colPat, group.by = "patient",
        pt.size=0.5, shuffle = T)+
  theme_void()

vis selected immune cell marker

genes <- data.frame(gene=rownames(seurat)) %>% 
    mutate(geneID=gsub("^.*\\.", "", gene)) 

selGenesAll <- read_tsv(file = paste0(basedir,
                                      "/data/overallImmuneCellMarker.txt")) %>% 
  left_join(., genes, by = "geneID")

seurat$label <- factor(seurat$label, levels = names(colLab))
Idents(seurat) <- seurat$label

# pOut <- avgHeatmap(seurat = seurat, selGenes = selGenesAll,
#                   colVecIdent = colLab, 
#                   ordVec=levels(seurat),
#                   gapVecR=NULL, gapVecC=NULL,cc=F,
#                   cr=F, condCol=F)

Dotplot

DotPlot(seurat, assay="RNA", features = rev(selGenesAll$gene), scale =T,
        cluster.idents = F) +
  scale_color_viridis_c() +
  coord_flip() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  scale_x_discrete(breaks=rev(selGenesAll$gene), labels=rev(selGenesAll$geneID)) +
  xlab("") + ylab("")

DotPlot(seurat, assay="RNA", features = rev(selGenesAll$gene), scale =F,
        cluster.idents = F) +
  scale_color_viridis_c() +
  coord_flip() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  scale_x_discrete(breaks=rev(selGenesAll$gene), labels=rev(selGenesAll$geneID)) +
  xlab("") + ylab("")

Featureplot

pList <- sapply(selGenesAll$gene, function(x){
p <- FeaturePlot(seurat, reduction = "umap", 
            features = x,
            cols=c("lightgrey", "darkred"),
            order = F)+
  theme(legend.position="right")
  plot(p)
})

session info

sessionInfo()
R version 4.3.0 (2023-04-21)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.4.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] scater_1.28.0               scuttle_1.10.3              SingleCellExperiment_1.22.0
 [4] SummarizedExperiment_1.30.2 Biobase_2.60.0              GenomicRanges_1.52.1       
 [7] GenomeInfoDb_1.36.4         IRanges_2.36.0              S4Vectors_0.40.1           
[10] BiocGenerics_0.48.0         MatrixGenerics_1.12.3       matrixStats_1.2.0          
[13] pheatmap_1.0.12             ggsci_3.0.1                 here_1.0.1                 
[16] runSeurat3_0.1.0            ggpubr_0.6.0                lubridate_1.9.3            
[19] forcats_1.0.0               stringr_1.5.1               readr_2.1.5                
[22] tidyr_1.3.1                 tibble_3.2.1                tidyverse_2.0.0            
[25] Seurat_5.0.2                SeuratObject_5.0.1          sp_2.1-3                   
[28] purrr_1.0.2                 cowplot_1.1.3               ggplot2_3.5.0              
[31] reshape2_1.4.4              dplyr_1.1.4                

loaded via a namespace (and not attached):
  [1] RcppAnnoy_0.0.22          splines_4.3.0             later_1.3.2              
  [4] bitops_1.0-7              polyclip_1.10-6           fastDummies_1.7.3        
  [7] lifecycle_1.0.4           rstatix_0.7.2             rprojroot_2.0.4          
 [10] vroom_1.6.5               globals_0.16.2            lattice_0.22-5           
 [13] MASS_7.3-60.0.1           backports_1.4.1           magrittr_2.0.3           
 [16] plotly_4.10.4             rmarkdown_2.26            yaml_2.3.8               
 [19] httpuv_1.6.14             sctransform_0.4.1         spam_2.10-0              
 [22] spatstat.sparse_3.0-3     reticulate_1.35.0         pbapply_1.7-2            
 [25] RColorBrewer_1.1-3        abind_1.4-5               zlibbioc_1.46.0          
 [28] Rtsne_0.17                RCurl_1.98-1.14           GenomeInfoDbData_1.2.10  
 [31] ggrepel_0.9.5             irlba_2.3.5.1             listenv_0.9.1            
 [34] spatstat.utils_3.0-4      goftest_1.2-3             RSpectra_0.16-1          
 [37] spatstat.random_3.2-3     fitdistrplus_1.1-11       parallelly_1.37.1        
 [40] DelayedMatrixStats_1.22.6 leiden_0.4.3.1            codetools_0.2-19         
 [43] DelayedArray_0.26.7       tidyselect_1.2.0          farver_2.1.1             
 [46] viridis_0.6.5             ScaledMatrix_1.8.1        spatstat.explore_3.2-6   
 [49] jsonlite_1.8.8            BiocNeighbors_1.18.0      ellipsis_0.3.2           
 [52] progressr_0.14.0          ggridges_0.5.6            survival_3.5-8           
 [55] tools_4.3.0               ica_1.0-3                 Rcpp_1.0.12              
 [58] glue_1.7.0                gridExtra_2.3             xfun_0.42                
 [61] withr_3.0.0               fastmap_1.1.1             fansi_1.0.6              
 [64] rsvd_1.0.5                digest_0.6.34             timechange_0.3.0         
 [67] R6_2.5.1                  mime_0.12                 colorspace_2.1-0         
 [70] scattermore_1.2           tensor_1.5                spatstat.data_3.0-4      
 [73] utf8_1.2.4                generics_0.1.3            data.table_1.15.2        
 [76] httr_1.4.7                htmlwidgets_1.6.4         S4Arrays_1.0.6           
 [79] uwot_0.1.16               pkgconfig_2.0.3           gtable_0.3.4             
 [82] lmtest_0.9-40             XVector_0.40.0            htmltools_0.5.7          
 [85] carData_3.0-5             dotCall64_1.1-1           scales_1.3.0             
 [88] png_0.1-8                 knitr_1.45                rstudioapi_0.15.0        
 [91] tzdb_0.4.0                nlme_3.1-164              zoo_1.8-12               
 [94] KernSmooth_2.23-22        vipor_0.4.7               parallel_4.3.0           
 [97] miniUI_0.1.1.1            pillar_1.9.0              grid_4.3.0               
[100] vctrs_0.6.5               RANN_2.6.1                promises_1.2.1           
[103] BiocSingular_1.16.0       car_3.1-2                 beachmat_2.16.0          
[106] xtable_1.8-4              cluster_2.1.6             beeswarm_0.4.0           
[109] evaluate_0.23             cli_3.6.2                 compiler_4.3.0           
[112] rlang_1.1.3               crayon_1.5.2              future.apply_1.11.1      
[115] ggsignif_0.6.4            labeling_0.4.3            ggbeeswarm_0.7.2         
[118] plyr_1.8.9                stringi_1.8.3             BiocParallel_1.34.2      
[121] viridisLite_0.4.2         deldir_2.0-4              munsell_0.5.0            
[124] lazyeval_0.2.2            spatstat.geom_3.2-9       Matrix_1.6-5             
[127] RcppHNSW_0.6.0            hms_1.1.3                 patchwork_1.2.0          
[130] bit64_4.0.5               sparseMatrixStats_1.12.2  future_1.33.1            
[133] shiny_1.8.0               ROCR_1.0-11               igraph_2.0.2             
[136] broom_1.0.5               bit_4.0.5                
date()
[1] "Wed Mar 13 18:55:50 2024"